
AUTOMATIC DOCUMENTATION METHODOLOG
FOR SOFTWARE MAINTNANCE

N TECH-NICAL REPORT

III

~2 2R 19 8

PO BOX 1148
MESILLA PARK, NM 88047

(505) 524-2154

f-n --- "-=uwat bz
mJzd talc a

In

AUTOMATIC DOCUMENTATION METHODOLOGIES
FOR SOFTWARE MAINTENANCE

TECHNICAL REPORT

L. D. LANDIS
P. M. HYLAND
A. L. GILBERT

A. J. FINE

15 JANUARY 1989

U.S. ARMY RESEARCH OFFICE

CONTRACT #DAAG029-85-C-0026

TechnicafSolution, Inc.
P.O. Box 1148

Mesifla Parki NM. 8804 7

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

UNCLASS IFIED
J SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

66 NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable) U. S. Army Research OfficeI Technical Solutions, Inc. I

6C. ADDRESS (Cty, State, and ZIP CCde) 7b. ADDRESS (City, State, and ZIP Cod)
P. 0. Box 12211

P.O. Box 1148 Research Triangle Park, NC 27709-2211!'esilla Park. NM. 88047 ______ ___________________
. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONI (If applicable)

U. S. Army Research Office 1919 6 -. '- -O 06.
Sc. ADDRESS (C/y. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P. 0. Box 12211 PROGRAM IPROJECT ITASK IWORK UNIT
Research Triangle Park, N1 27709-2211 ELEMENT NO. . . ACCESSION NO.

11. TITLE (Inclu*e SeCurny OaCifiCation)

12. PERSONAL AUTHOR(S)
L. D. Landis, P.M. Hyland, A.L. Gilbert, A.J. Fine

13.. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
, Technical FROM Sept 85 TO NOV 88 1 1anuary lqAq 1AR
. 16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of the author(s) and should not be construed as an official Department of the Army position,
nolicv. or decision, unless so desisnated by other documentation.

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19-, ABSTRACT (Continue on reverse If necenary and identify by block number)

Given the non-trivial costs of software systems, it has become imperative to maintain
software for a much longer period of time that was considered desirable in the past.
Providing tools that will facilitate software maintenance helps to extend the useful lifetim,
of a software system.

This report discusses a research project that was directed at providing a general-purpose,
automatic documentation generator that could provide both the detailed and higher-level
information that maintenance programmers perceive useful.

The project proceeded in three phases. The first phase consisted of an examination of the
documentation methodologies currently available, and language requirements necessary to
achieve these documentation methodologies. The second phase consisted of development of the
design for a documentation language which would be used as an intermediate represenation in

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
QUNCLASSIFIEDUNLIMITED C SAME AS RPT. 3 DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE On(mlc Area Code) 22c. OFFICE SYMBOL

00 FORM 1473.64 MAR 53 APR edition may be used unt! exausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED

UNCLASSIFIED
9CURlTY CLASIICATION OF T1416 PA@l

the documentation process. Finally, a research prototype was developed, in order to test
the design and validate the research conclusions.

UNCLASSIFIED
89CURITY CILASSIFICATION OF THIS PAOE

ABSTRACT

" Given the non-trivial costs of software systems, it has become imperative to maintain
software for a much longer period of time than was considered desirable in the past.
Providing tools that will facilitate software maintenance helps to extend the useful lifetime
of a software system.

CThis report discusses a research project that was directed at providing a general-purpose,
automatic documentation generator that could provide both the detailed and higher-level
information that maintenance programmers perceive useful.

-The project proceeded in three phases. The first phase consisted of an examination of the
documentaion methodologies currently available, and language requirements necessary to
achieve these documentation methodologies. The second phase consisted of the
development of the design for a documentation language which would be used as an
intermediate representation in the documentation process. Finally, a research prototype was
developed, in order to test the design and validate the research conclusions.

- -.

12 El
\ - ---

DiStr i ,ut ion/

Avallablity Codes
Av~~ i~j~ U~ Y godes

I n and / or_D ist _ '-
Ao u.c ia l fp

Automatic Doc~umenamtion Methodologies for Software Maintenance Pagei

Table of Contents

CHAPTER 1 - INTRODUCTION 1

1.1 OVERVIEW OF THE PROBLEM AND FOCUS OF THIS REPORT . . 1

1.2 BACKGROUND AND RELATED WORK 1

1.3 PURPOSE, GOALS, AND APPROACH 3

1.4 OVERVIEW OF THE PROJECT 4

1.4.1 RESEARCH: APPROPRIATE DOCUMENTATION TECHNIQUES
FOR SOFTWARE MAINTENANCE 4

1.4.2 DESIGN: THE NEXT STEP 5

1.4.3 IMPLEMENTATION: THE RESEARCH PROTOTYPE 5

1.5 FORMAT OF THE REPORT 7

CHAPTER 2 - THE RESEARCH PHASE 8

2.1 DETERMINATION OF APPROPRIATE DOCUMENTATION
TECHNIQUES 8

2.1.1 EVALUATION CONSIDERATIONS 8

2.1.2 DOCUMENTATION TYPES EVALUATED 9

2.1.2.1 Pretty Printers 9

2.1.2.2 Warnier-Orr Diagrams 10

2.1.2.3 Jackson Diagrams 10

2.1.2.4 Flowcharts 11

2.1.2.5 Nassi-Shneidermann (NS) Diagrams 12

2.1.2.6 Pseudocode 12

2.1.2.7 Action Diagrams 13

2.1.2.8 Higher Order Software (HOS) Charts 13

2.1.2.9 Cross-Reference/Usage Listing 14

2.1.3 CONSTRAINTS APPLIED TO DOCUMENTATION 14

2.1.4 SELECTED DOCUMENTATION TYPES 14

Automatic Documentation Medtodologies for Software Mainenance Page ii

2.2 EVALUATION OF TARGET LANGUAGE FAMILY 15

2.2.1 LANGUAGE REQUIREMENTS 15

2.2.2 POTENTIAL PROBLEMS WITH SEMANTICS 16

2.2.2.1 Differences in the Semantics of Syntactically Similar Code 16

2.2.2.2 Name Spaces 16

2.2.2.3 Lexical Versus Dynamic Scoping 17

2.2.2.4 Operator Precedence 17

2.2.2.5 Operator Overloading 18

2.3 REEVALUATION OF TECHNICAL VALIDITY OF PROPOSED
APPROACH 18

2.4 SUMMARY OF RESEARCH AND REEVALUATION 19

CHAPTER 3-DESIGN OF THE DL 20

3.1 DOCUMENTATION REQUIREMENTS AFFECTING THE DL
DEFINITION 21

3.2 TARGET LANGUAGE REQUIREMENTS AFFECTING THE DL
DEFINITION 22

3.2.1 RESTRICTIONS 22

3.2.2 RETENTION OF ALL INFORMATION 23

3.2.3 EQUIVALENT SPECIFICATION 23

3.3 DEFINITION OF THE DL 24

3.4 VERIFICATION OF DEFINITION FOR DESIGN COMPLETENESS . 25

3.5 SUMMARY OF DL DESIGN AND EVALUATION 25

CHAPTER 4- IMPLEMENTATION OF THE DL DESIGN: THE
RESEARCH PROTOTYPE 26

4.1 DOCUMENTATION LANGUAGE COMPILER 26

4.2 PREPROCESSOR 26

4.2.1 DATA TYPES 27

4.2.2 EXPRESSIONS / STATEMENTS 27

4.2.3 CONTROL FLOW 27

4.2.4 DECLARATIONS / COMMON BLOCKS / EQUIVALENCES . . . 29

4.2.5 INPUT / OUTPUT 30

Automatic Documentation Methodologies for Software Maitenance Page iii

4.3 POSTPROCESSOR 31

4.3.1 NSL SPECIFICATION 31

4.3.2 NSL STATEMENTS TO NS SYMBOLS 32

4.3.2.1 Iteration Statements 32

4.3.2.2 Selection Statements 32

4.3.2.3 Control Statements 33

4.3.2.4 Other Statements 34

4.3.3 NSL GENERATION 34

4.3.4 NSL INTERPRETER 34

4.4 AN EXAMPLE OF PROTOTYPE OPERATION 35

4.5 UNEXPECTED RESULTING TOOLS 39

4.5.1 RAILROAD DIAGRAMMER 39

4.5.1.1 Railroad Diagrammer Strategy 39

4.5.1.2 Railroad Diagrammer Implementation 39

4.5.1.3 Railroad Diagrammer Example 40

4.5.2 STAND-ALONE NS DIAGRAM GENERATOR 40

4.6 SUMMARY OF IMPLEMENTATION 41

CHAPTER 5 - CONCLUSIONS 42

5.1 FINDINGS 42

5.2 BENEFITS FROM THE WORK 43

5.3 PROBLEMS WITH THE APPROACH 44

5.4 FUTURE STUDY AREAS 44

Automatic Documentation Methodologies for Software Maintenance Page iv

List of Figures and Tables

Table 1.2.1 CSM Breakdown Of Topics 2

Table 1.2.2 CSM Breakdown Of Tools 2

Figure 1.4.1 Parser/Documenter Dataflow Diagram 4

Figure 1.4.3.1 An Example Routine Processed By An Automatic Documentation
"Extractor"..... 6

Figure 1.4.3.2 The Resulting Documentation Produced From The Routine Shown In
Figure 1.4.3.1 7

Figure 2.1.2.1 Sample Of "Original" Code Fragment 9

Figure 2.1.2.1.1 Example Of Pretty Printer Output 10

Figure 2.1.2.2.1 Example Of A Warnier-Orr Diagram 10

Figure 2.1.2.3.1 Example Of A Jackson Diagram 11

Figure 2.1.2.4.1 Example Of A Flowchart 11

Figure 2.1.2.5.1 Example Of A Nassi-Shneidermann (NS) Diagram 12

Figure 2.1.2.6.1 Example Of Pseudocode. 12

Figure 2.1.2.7.1 Example Of An Action Diagram 13

Figure 2.1.2.8.1 Example Of A Higher Order Software (HOS) Chart 13

Figure 2.2.2.3.1 Scoping Example 17

Figure 4.2.1.1 Mapping Data Types From FORTRAN To The DL 27

Figure 4.2.3.1 FORTRAN Control Flow Example 28

Figure 4.2.3.2 The DL Rendering Of Figure 4.2.3.1 28

Figure 4.2.3.3 Better DL Rendering Of Loop Structure 28

Figure 4.2.4.1 FORTRAN To DL: Common Blocks 30

Figure 4.2.5.1 FORTRAN Input / Output Example 30

Figure 4.2.5.2 The DL Version Of Figure 4.2.5.1 31

Figure 4.2.5.3 Output Generated From Figure 4.2.5.2 3 i

Figure 4.3.2.1.1 DL To NSL: Iteration 32

Figure 4.3.2.2.1 DL To NSL: Selection 33

Figure 4.3.2.3.1 DL To NSL: Control 33

Automatic Documentation Methodologies for Software Maintenance Page v

Figure 4.3.2.4.1 DL To NSL: Other............................... 34

Figure 4.4.1 The C-Coded Routine 35

Figure 4.4.2 The DL Representation. 35

Figure 4.4.3 The Symbol-Table Dump. 36

Figure 4.4.4 The NSL Representation 37

Figure 4.4.5 The Resulting NS Diagrams 38

Figure 4.5.1.3.1 Example Grammar Specification 40

Figure 4.5.1.3.2 Railroad Diagram For Example Grammar 40

Figure 4.6.1 Research Prototype Dataflow Diagram 41

Automatic Documentation Methodologies for Software Maintenanc Page vi

CHAPTER 1 - INTRODUCTION

1.1 OVERVIEW OF THE PROBLEM AND FOCUS OF THIS REPORT

The ever-increasing costs of software systems motivate a desire to protect the initial
investment in such a system by maintaining it for as long as possible. However, software
has a limited lifetime of usefulness, because as it ages support becomes more difficult. Major
factors in determining when to replace, rather than to maintain, a software system are 1) the
costs associated with employing and supporting a programmer working on the code, 2) the
time required to train programmers to maintain code following in-house standards, and 3)
the costs associated with maintaining multiple versions of a software system over an
indeterminate period of time.

Empirical results indicate that maintenance programmers consume an average of one-fourth
to one-third of allocated modification time tracing and understanding the logic in the
software to be modified. [Fjeldst] A significant gain in maintenance programmer
productivity (hence, a reduction in maintenance costs, and an extension of the software's
lifetime) should be achievable by providing those programmers with a tool that will facilitate
understanding program logic.

This report presents research performed by Technical Solutions, Incorporated (TSI)
addressing the feasibility and development of just such a tool. This report does not address
tools for software managers or software developers; the focus is on a tool for maintenance
programmers, providing them with information that will improve performance. The
research discussed in this report was supported by the U.S. Army Research Office, under
contract number DAAG029-85-C- 0026.

1.2 BACKGROUND AND RELATED WORK

While there are two types of documentation associated with software systems, only one type
is of interest to maintenance programmers and to this research. User documentation, or
information about the purpose and use of a software system, does not (and should not)
address the system's internal structure and operation. It is this internal information that is
of interest to the maintenance programmer.

Internal, or programmer documentation, can take a number of forms, but it has only one
goal: to provide information to the programmer regarding the internal structure and purpose
of the code itself, addressing such issues as the data structures and control structures
employed, the static structure of the software (sub)system, any "tricks" used or shortcuts
taken by previous programmers, and any other information an implementor deems
appropriate. This information serves to provide an environment in which the maintenance
programmer can work.

While much research is being done in the areas of various kinds of software maintenance,
maintenance environments, configuration management, etc., little research is being done
regarding tools for maintenance programmers. This was made evident by examining the

Automatic Documentation Methodologies for Software Maintenance Page 1

Proceedings of the Conference on Software Maintenance (CSM) for the last three
conferences (1985, 1987, and 1988). An examination of the abstracts for all of the articles
in all three of the Proceedings yields the following breakdown of topics, as shown in Table
1.2.1, below, where tools in general are the only item of interest.

TOPICS OF CSM # OF PANEL
ABSTRACTS # OF ARTICLES DISCUSSIONS

CSM-85:
tools 6 1
other research 22 7

CSM-87:
tools 2 0
other research 19 6

CSM-88:
tools 8 0
other research 52 5

TOTAL
tools 16 1
other research 93 18

CSM Breakdown Of Topics
Table 1.2.1

As can be seen from Table 1.2.2, documentation was the topic most commonly addressed.
This emergence of research regarding documentation tools signals a new awareness of the
importance of software maintenance tasks, and of the role of maintenance programmers.

TOOLS # OF ARTICLES

Software Managers 1

Non-Prototype I

Documentation of Source Code 8

DLcovery of Code Structure 4

None of the Above 2

TOTAL 16

CSM Breakdown Of Tools
Table 1.2.2

Automatic Documentation Metlodologies for Software Maintenance Page 2

1.3 PURPOSE. GOALS. AND APPROACH

The purpose of the research reported herein was to study the feasibility of a tool to facilitate
maintenance programming. Consequently, the end goal of this research was to develop a
prototype tool, embodying the concepts discovered to be of interest to maintenance
programmers. Since good internal documentation facilitates the understanding of code, it
was determined that a documentation generator depicting static code structure, dataflow,
overview, and detailed information would be the end product. With the development of this
documentation generator as the final goal, we worked backward to identify other goals.

The documentation generator was to be able to accept a general class of structures from
general-purpose programming languages, thus it was decided to build upon the
well-understood concepts of compiler theory, structuring the tool much like a production
compiler. The source code to be documented would be consumed and used to build symbol
and code tables which would completely specify the source code. The symbol and code
tables would then be consumed and used to generate the documentation itself.

From this process, it was determined that information was needed regarding the
documentation methods available, and regarding the feasibility of various potential source
languages for such a tool.

Thus, the goals for the research were:

1. Research documentation techniques specifically appropriate to the software
maintenance environment, as contrasted with methods commonly used in
development;

2. Summarize the programming language features that were appropriate for the class of
potential source .inguages for the documentation tool;

3. Research the design of a general documentation language, focusing on the ability to
handle a selected class of languages, using the proposed approach (structured in the
three categories of preprocessor, compiler, and postprocessor); and

4. Determine if the proposed approach could be implemented to automatically

transform programming language source code into documentation.

These four goals were used to identify the milestones an a multi-phase research program.

The research involved the development of automatic documentation generation in three
steps: preprocess the source language into an intermediate representation (or documentation
language), compile the documentation language into a parse tree (with symbol tables), and
finally, generate the selected documentation from the parse tree.

The next section provides an overview of the project. Each phase: research, design, and
implementation, is presented in greater detail in Chapters 2, 3, and 4, respectively.

Automatic Documentation Medodologies for Software Maintenance Page 3

1.4 OVERVIEW OF THE PROJECT

The four goals presented above were incorporated into the work plan as follows:

Phase 1: The Research Phase involved the determination of input and output
requirements for the documentation generator (thus, the general
documentation language). (Achievement of goals one and two, above.);

Phase 2: The Design Phase involved the design of the general documentation
language. (Achievement of goal three, above.); and

Phase 3: The Implementation Phase involved implementing the design, proving that
the research approach was viable. (Achievement of goal four, above.)

Figure 1.4.1 depicts the dataflow diagram for the system, or tool, that would be the result of
this project. The tool was named the Parser/Documenter (P/D).

Searches Parser Tree.
Extracting Relevant //oR

Information & Building Documentation
Documentation Output of Souere

Parser/Documenter Dataflow Diagram

Figure 1.4.1

1.4.1 RESEARCH: APPROPRIATE DOCUMENTATION TECHNIQUES FOR
SOFTWARE MAINTENANCE

The research began by evaluating the methods of documentation that are standard practice
in industry, with a specific emphasis on their appropriateness in a maintenance programming
environment. There were several evaluation criteria, including whether a given
methodology could represent both detailed and overview information, and whether each
methodology could represent static code structure and dataflow information.

The evaluation led to an important requirement for the maintenance tool. In order to
maximize the perceived usefulness of a maintenance tool, the documentation provided must

be familiar to a large class of programmers currently working in industry. Expecting
programmers to learn a new documentation methodology, in addition to their other

responsibilities, was concluded to be counterproductive.

Automatic Documentation Methodologies for Software Maintenance Page 4

Central to the research was the identification of target languages which would serve as source
languages for the tool, and from which the documentation language would be developed.
The selected target languages included FORTRAN, Pascal, and C, with some consideration
to the other standard third generation languages: COBOL, DIBOL, and BASIC.
Additionally, many of the requirements of Ada were considered, but as a whole, Ada was
deemed too complex to attempt on a first implementation.

Each of the target languages was examined as to its peculiar requirements, and those
requirements were compiled into a list. From the individual language lists, a summarized
list of requirements was developed, reducing the conflicting requirements to special cases,
where needed. This resulted in a derived/hybrid language requirement.

Consequently, nine of the most popular documentation methodologies were investigated,
and the commonly used third generation languages were examined. From the set of nine
documentation methods, three were selected to test the proposed approach. The primary
technique chosen was Nassi-Shneidermann (NS) Diagrams, while Cross-References and
Action Diagrams were chosen as secondary techniques. The class of potential source
languages was reduced to FORTRAN and C.

1.4.2 DESIGN: THE NEXT STEP

The third goal of the research was to design a general documentation language that would
facilitate the determination of the validity of the proposed approach. Once the requirements
for source languages (input) and documentation methods (output) were identified, the design
of the general Documentation Language (DL) proceeded. Data and control structures were
designed to represent the attributes of the emerging DL. From the data structures, the source
representation of the DL was developed. As work proceeded, it appeared that the X3J 11
version of C would serve as a good base. Minimal extensions were made to the grammar,
and the result was a general purpose documentation language that allowed for the retention
of all the requirements.

The design was then executed "by hand": the sample DL was transformed into data structures
which represented the parse tree and symbol tables to be generated by the compiler. From
the data structure diagrams, a conversion to NS Diagrams was performed.

With the completion of this process, i.e., the reduction of the requirements, the manual
construction of data structures, and the manual interpretation of those data structures, an
implementation of the approach was deemed possible.

1.4.3 IMPLEMENTATION: THE RESEARCH PROTOTYPE

The implementation of the approach began with the DL compiler. One important
consideration was to prevent any need for special documentation signaling in the original
code. This required the DL to be a complete language. Documentation signaling has
frequently been a requirement for automatic documentation generators. Pseudo-comments
may be used as a signaling device to a documentation generator, yet these signals are buried
in comments, which are ignored by the compiler.

Automatic Documentation Methodologies for Software Maintenance Page 5

For example, an automatic documentation "extractor" could easily be constructed to process
the routine shown in Figure 1.4.3.1 to produce the documentation shown in Figure 1.4.3.2.
In this example, the signaling technique used was based on the rule that certain key words
are processed in a special manner, specifically, a beginning comment string, i.e., "/***" on
a line by itself, up to the closing comment, i.e., "*" on a line by itself, delimits a signal to
the compiler.

I/***

I* $Locker: $
* $Header: pd.l,v 2.3 88/10/21 14:05:37 ldl Exp $

I/***

* File:
I* usrlib/icsmalloc.c

* Description:
* To allocate ICS memory
I*/

I #include "icslib.h"

* Synopsis:

I* #include <ics.h>
I* #include <icscall.h>

* long
* icsmalloc(fd, size)

I* int fd; / file descriptor of the ics device
* long size; / size of memory to allocate

* Description:
* Allocate a block of memory. If a large enough chunk of
* memory is not available, but the last free block
* contiguous to video 0 memory is large enough if memory
* overflows into video 0, then that block is returned.

I long
I icsmalloc(fd, size)

int fd;
I long size;

I long ret;
I icscall(fd, "malloc", &ret, 1, size);
I return ret;
I)//* icsmalloc */

I /* EOF usrlib/icsmalloc.c */

An Example Routine Processed By An Automatic Documentation "Extractor "

Figure 1.4.3.1

Automatic Documentation Methodologies for Software Maintenance Page 6

I icsmalloc Programmer's Reference Rev: 1.1

I NAME
I icsmalloc - To allocate ICS memory

I SYNOPSIS
I #include <ics.h>
I #include <icscall.h>

I long
I icsmalloc(fd, size /
I int fd; #I file descriptor of the ics device
I long size; # size of memory to allocate

I DESCRIPTION
I Allocate a block of memory. If a large enough chunk of
I memory is not available, but the last free block
I contiguous to video 0 memory is large enough if memory
I overflows into video 0, then that block is returned.

I SEE ALSO
I usrlib/icsmalloc.c

I CAVEATS
I None

The Resulting Documentation Produced From The Routine Shown In Figure 1.4.3.1
Figure 1.4.3.2

This concludes the introductory discussion of the project. This discussion is expanded in

some detail in the following Chapters.

1.5 FORMAT OF THE REPORT

Chapter 2 presents the research performed for this effort. Chapter 3 provides the design of
the research prototype which would later be used to support the research conclusions, and
Chapter 4 provides the implementation of the research prototype. Chapter 5 presents the
conclusions of this effort. Appendix A contains the DL grammar, Appendices B and C
present two examples of P/D operation, and Appendix D contains the references and a list
of sources for related reading.

Automatic Documentation Methodologies for Software Maintenance Page 7

CHAPTER 2 . THE RESEARCH PHASE

The research phase was performed in three consecutive stages. First, the appropriate
documentation techniques were determined as they are embodied by the documentation
methodologies in use today. Second, the target group of languages was evaluated to
determine a common set of requirements which would then direct the definition of a general
documentation language for that group of languages. Third, the technical validity of the
proposed approach was reevaluated.

2.1 DETERMINATION OF APPROPRIATE DOCUMENTATION
TECHNIQUES

As previously stated, the end goal of the research was to provide useful documentation to
maintenance programmers. For this evaluation, the mindset was that of "What sort of
documentation would help me, a maintenance programmer, to achieve a better understanding
of this code?". As such, this review was subjective, and thus the opinions of maintenance
programmers were solicited and taken into consideration during this phase.

2.1.1 EVALUATION CONSIDERATIONS

The languages under consideration in this research were all of a general purpose nature.
Thus, there was very little that could be done to "precast" the form of the documentation,
i.e., force the results to take a particular, universally-acceptable form. For example, if the
language being documented was instead a special purpose mathematical evaluation language
(such as Maxima, Mimic or Midas), it would be relatively easy to cast the form of
documentation provided.

General purpose languages, on the other hand, are used to specify anything from simple
expressions to complex simulation models, to real-time process control, or to the compilers
for the languages themselves. The varying purposes motivated the need for a variety of
documentation outputs to be addressed.

In order to achieve a workable set of documentation methods, a set of evaluation
considerations or acceptance criteria had to be developed. It was determined that the
following criteria were of importance to the problem:

* Whether each methodology was capable of representing static code structure or
dataflow information, and whether this information was available in detail, or as an
overview;

* Whether that same static code structure or dataflow information required any
specialized output devices;

Automatic Documentation Methodologies for Software Maintenance Page 8

" Whether each methodology would work well (if at all) on code not designed and

developed with it;

" Whether each methodology could be learned easily; and

" Whether it would be feasible to extend the functionality of the methodology.

Thus, the first step in evaluating the documentation methodologies was to review the
standard documentation techniques currently used in industry. Once selected, these
techniques were each subjected to the acceptance criteria so as to constrain the initial set of
postprocessors to those that would be the most useful to a maintenance programmer. Finally,
each selected documentation form was examined as to whether extensions would make the
method more useful, and the final form of the documentation was formalized.

2.1.2 DOCUMENTATION TYPES EVALUATED

In order to demonstrate the documentation methods evaluated, Figure 2.1.2.1 is an "original"
code fragment which was then represented in the various methodologies. Of the nine
following subsections, which discuss a documentation methodology, eight contain the
methodology's representation of its code segment. These subsections include presentations
of Pretty Printers, Warnier-Orr Diagrams, Jackson Diagrams, Flowcharts,
Nassi-Shneidermann (NS) Diagrams, Pseudocode, Action Diagrams, Higher Order Software
(HOS) Charts, and Cross-Reference/Usage Listings.

1. read (custfile, custrec);
2. while (not eof (custfile)) (printrec (custrec)
3. read (custfile, custrec);

Sample Of "Original" Code Fragment
Figure 2.1.2.1

2.1.2.1 Pretty Printers

A Pretty Printer is a stylizer that addresses the placement of lines of code on a printed page
or monitor. That is, it can ensure that indentation correctly repr,:sents the subordinate
clauses, and that "begin"s and "end"s are lined up and occur in matching sets. Consequently,
it represents static code structure at the detail level. It needs no specialized output devices,
and was built to work with existing code. The output of a Pretty Printer is easy to understand,
but it is difficult to envision how to extend a Pretty Printer's functionality. [Marti85c] See
Figure 2.1.2.1.1 for an example of Pretty Printer output.

Automatic Documentation Mediodologies for Software Mainenance Page 9

read (custfile, custrec);
while (not eof (custfile))

(
printrec (custrec);
read (custfile, custrec);

}

Example Of Pretty Printer Output
Figure 2.1.2.1.1

2.1.2.2 Warnier-Orr Diagrams

Warnier-Orr Diagrams are capable of depicting the structure of both code and data structures,
both as an overview and in detail. They do not depict dataflow or program logic.
Warnier-Orr Diagrams are displayed using braces that travel across a page, and are read from
left to right. They need a graphics printer for hardcopy output, but it might be possible to
display them using a non-graphics monitor. They work with code that was not designed
using them, and are easy to learn. They do not lend themr-!1ves easily to the depiction of
dataflow or program logic. [Marti85c] See Figure 2.1.2.2.1 for an example of a Warnier-Orr
Diagram.

read record
Customer List I print record

Example Of A Warnier-Orr Diagram
Figure 2.1.2.2.1

2.1.2.3 Jackson Diagrams

Jackson Diagrams depict the structure of code and data structures, but only as an overview.
Detailed information about the code is not available, nor is program logic. Information is
represented as a collection of boxes, collected into a tree structure, and is read from top to
bottom. They require either a graphics printer or graphics monitor. They are useful on code
not built with them, and are easy to learn. Extensions to their functionality seem reasonable,
possibly by attaching dataflow information to the boxes in the tree. [Marti85c] See Figure
2.1.2.3.1 for an example of a Jackson Diagram.

Automatic Documentation Medhodologies for Software Maintenance Page 10

Customer
List

Print Record Read Record

Example Of A Jackson Diagram
Figure 2.1.2.3.1

2.1.2.4 Flowcharts

Flowcharts depict detailed information: the sequential representation of the code. They are
not capable of depicting program structure. They are displayed as a collection of connected
symbols, where the symbols have a meaning in and of themselves, e.g., a diamond shape
represents a test in the code. To obtain hardcopy and electronic output, graphics capabilities
are iequired. They can generate useful information about code not designed and developed
with them, and are easy to learn. However, it is not easy to see how to extend their
functionality to represent the program structure, or dataflow information. [Marti85c] See
Figure 2.1.2.4.1 for an example of a Flowchart.

ter Customer
Record

~Read

Print ReodCustomer
Record

Example Of A Flowchart
Figure 2.1.2.4.1

Automatic Documentation Methodologies for Software Maintenance Page II

I
2.1.2.5 Nassi-Shneidermann (NS) Diagrams

Nassi-Shneidermann (NS) Diagrams depict the static structure of a program, and the program
logic, both at a detailed level. NS Diagrams are built from a small set of symbols for iteration,
selection, and sequence. Complex code is represented by levels of nested symbols. They
do not require graphics capabilities. However, using line-drawing graphics does aid in their
appearance. NS Diagrams are useful on code that was not generated using them, and are
easy to learn. While NS Diagrams were not designed to depict either dataflow or overview
information, it is easy to see how to extend their functionality by adding symbols for tracking
dataflow or providing overview information. It is not easy to envision a means for
representing data structures using NS Diagrams. [Marti85c] See Figure 2.1.2.5.1 for an
example of a NS Diagram.

Read Customer File

While not eof

Print Record

Read Record

Example Of A Nassi-Shneidermann (NS) Diagram
Figure 2.1.2.5.1

2.1.2.6 Pseudocode

The generator of Pseudocode can define what information is included, and what is excluded.
Pseudocode can range from a structured English language rendering of the program
semantics to an essay-like discussion of the programmer's thoughts at the time of code
generation. A Pseudocode generator needs no specialized output devices. It is possible to
build Pseudocode from code not developed with it, but it can be difficult to achieve "good"
Pseudocode. [Marti85c] See Figure 2.1.2.6.1 for an example of Pseudocode.

read a record
while record was read

begin
print the record
read a record

end

Example Of Pseudocode
Figure 2.1.2.6.1

Automatic Documentation Methodologies for Software Maintenance Page 12

2.1.2.7 Action Diagrams

Action Diagrams can depict both an overview and a detailed representation of the code, and
can be used to represent both program structure and dataflow. They are displayed by the
use of various styles of brackets drawn around the code. They do not require graphics
capabilities for display. They can be used with code not developed with them, and are
considered easy to learn. [Marti85c] See Figure 2.1.2.7.1 for an example of an Action
Diagram.

Read Customer Record

Customer File

Print Customer Record

Read Customer Record

Customer List

Example Of An Action Diagram
Figure 2.1.2.7.1

2.1.2.8 Higher Order Software (HOS) Charts

HOS charts can depict both details and an overview, but they were eliminated during the
early stages of the survey due to their emphasis as a design tool. There are serious questions
as to their usefulness with code not designed with them. They are considered very difficult
to learn. [Marti85c] See Figure 2.1.2.8.1 for an example of a Higher Order Software (HOS)
Chart.

Customer List

Join

Read Record Record Print Record

Example Of A Higher Order Software (HOS) Chart
Figure 2.1.2.8.1

Automatic Documentation Methodologies for Software Maintenance Page 13

2.1.2.9 Cross-Reference/Usage Listing

Cross-References, or usage listings, depict detail in a user-defined manner. They may be
used in some form of hypertext, i.e., interactively, or to simply track all the occurrences of
a given identifier. A hypertext-oriented Cross-Reference generator would probably require
a graphics monitor to be useful, while the canonical Cross-Reference generator requires no
specialized output devices. Hypertext is difficult to learn, but extensions to a hypertext-
based tool are limited only by the imagination of the developers. The canonical Cross-
References are simple to understand, but difficult to envision extensions for. [Marti85c]

2.1.3 CONSTRAINTS APPLIED TO DOCUMENTATION

After examining the various documentation methodologies discussed above, it was apparent
that certain constraints were relevant in order to maximize the desirability of a resulting tool
to maintenance programmers. The most desirable documentation methodologies:

1. Depict both detailed and overview information, and both dataflow and code
structure;

2. Do not require specialized output devices, either graphics printers or graphics
monitors;

3. Generate useful information from code not developed with them;

4. Are perceived as being easy to learn; and

5. Are perceived to be easily extensible (if they do not make available all the
information in constraint number 1).

It is possible, and probably obvious in hindsight, that the initial constraints would not survive
for the duration of the project. However, decisions such as the limitation to line-
printers-only forced the research to remain focused on the development of the documentation
generation process rather than allowing the focus to get side-tracked on time-consuming
issues such as graphics generation. It is clear that this restriction also made some of the
documentation methodologies that were investigated appear less desirable than they might
have been in a more graphics-oriented environment. By the time the final decision of
documentation methodologies was made, the Macintosh was a viable system, and Postscript
(and Postscript printers) was available. Consequently, graphical documentation was pursued
after all. In spite of the power of these new technologies, the initial choices would probably
be very similar today. However, those methodologies requiring more graphics support
would not have been as easily rejected.

2.1.4 SELECTED DOCUMENTATION TYPES

The documentation types finally selected as most useful to maintenance programmers were
NS Diagrams, Action Diagrams, and Cross-References. The consideration of extensions
included the provision of a "subroutine header" symbol for NS Diagrams (containing

Automatic Documentation Methodologies for Software Maintenance Page 14

Adataflow information), and the examination of hypertext toward an interactive

Cross-Reference generator. Action Diagrams were not pursued because it was felt that NS
charts would more effectively meet the familiarity-to-programmers criteria.

Thus, a subset of documentation methodologies available was examined, and reasonable
constraints were applied to those methodologies to yield a small set of potential outputs for
the tool under consideration. The more commonly used third generation languages were
then surveyed to determine the inputs necessary for the maintenance tool.

2.2 EVALUATION OF TARGET LANGUAGE FAMILY

The research focused on the development of a methodology that would allow for the
incorporation of several different languages into one common documentation system. This
research differed from the work of others largely in that the target was to include several
languages and forms of documentation, rather than a specific form of documentation for one
specific language. Additionally, the documentation process was to be automatic, which
required the sophisticated treatment of the source language, and the problems of semantics
(different interpretation of similar constructs).

2.2.1 LANGUAGE REQUIREMENTS

Before beginning to compile the DL requirements that were a function of the requirements
and capabilities of the individual target languages, the set of concepts common to all of the
target languages was identified. The identification of common concepts allowed for the
analogous treatment of those concepts, allowing concepts unique to each language to be
given the individual consideration they required.

The target languages had differing levels of data definition requirements. FORTRAN,
although in most cases the simplest, has some requirements that need spucial consideration.
All of the languages allowed for variables to have single values. Also, all of the languages
allowed for the vectors of these values, and the arbitrary vectors of vectors (arrays) of values.
As mentioned, FORTRAN is generally thought to have the least requirements, but its
handling of the "complex" type proved to require the inclusion of "complex" as a basic type
in DL.

Many of the "modem" languages (such as C, Ada, and Pascal) allowed for the use of higher
level types, including sets of values, ranges of values, and enumerated lists of values. In
these cases, basic types are extended to provide for a more abstract representation of data
than is typically allowed in FORTRAN. The structuring of data aggregates (records
composed of several data fields) and its close relative, the union (or record variant), allows
for the sophisticated grouping of data into an object upon which the program operates.
Additionally, users may define their own types, according to their needs.

Aliases (multiple names for the same item), or equivalences, may be handled using variant
records, where names "overlay" each other. Although this mechanism is difficult to read in
its DL form, postprocessors are able to identify items that are aliases of each other using this

approach.

Automatic Documentation Methodologies for Software Maintenance Page 15

Peculiar language requirements, not easily handled in a straightforward manner include
source substitution (such as macros in C), statement functions, parameters in FORTRAN,
and packaging and task management in Ada.

2.2.2 POTENTIAL PROBLEMS WITH SEMANTICS

When trying to identify the relationships between languages (and grammars), at least five
areas exist with a high potential for causing problems. These five areas are:

- Differences in the semantics of syntactically similar code;

- Name spaces;

• Lexical versus dynamic scoping;

- Operator precedence; and

- Operator overloading.

Each of these areas provides significant power to programming languages, but requires ad
hoc treatment. Additionally, conflicts between target languages result in contradictory
requirements.

2.2.2.1 Differences in the Semantics of Syntactically Similar Code

The transformation of a programming language to documentation (or object code) requires

the proper interpretation of input tokens to meaning. A typical language compiler provides
this interpretation, called semantics, as the source is translated from readable tokens to
machine instructions. In many cases, languages that are similar in appearance can vary
significantly in the semantics (or meaning) applied to the source. For example, in Pascal,

the statement

if i = 0 then...

has a very different meaning from the C statement

if (i = 0) ...

in that the Pascal statement compares the value of'i' to zero, and if equal, the 'then' statement

is executed. On the other hand, this statement in C, although it appears similar, in fact

assigns zero to 'i', and since the condition is always zero 'the result of the assignment), the
'then' portion of the 'if' statement is never executed.

2.2.2.2 Name Spaces

The rules for names vary widely in the class of languages that were considered. The
implementation variations for a single language such as FORTRAN made flexibility

necessary. To provide the needed flexibility, the name space (organization of how items are

uniquely identified by name) was constructed to allow for a "nested" specification, where

Automatic Documentation Methodologies for Software Maintenance Page 16

name uniqueness was required only within a localized group. The decision was made to

-have a postprocessor phase reduce (or flatten) the name space, and generate conflicts, if this
was a characteristic of the particular implementation.

2.2.2.3 Lexical Versus Dynamic Scoping

Part of the name space problem is the accessibility of data due to the scoping requirements
of the language. The scope of access is defined as the limits within the code that the name
is active. In a block structured language, several different variables may all share the same
name, yet be unique from each other. The immediate, or local, context defines which
variable is being referred to. For example, Figure 2.2.2.3.1 presents a C code segment where
each reference to an identifier has its scope defined in the commentary.

1 main()
2
3 int i, j;
4 {
5 int j;
6 i = 1; /Refers to 'i' defined on line 3
7 {
8 int i;
9 i = 2; //Refers to 'i' defined on line 8
10 j = 3; /Refers to 'j' defined on line 5

12 = 5; H Refers to 'j' defined on line 5
13 1 = 6; / Refers to 'i' defined on line 3
14 1
15 J = 7; //Refers to 'j' defined on line 3
16 = 8; /Refers to 'i' defined on line 3
17 }

Scoping Example
Figure 2.2.2.3.1

2.2.2.4 Operator Precedence

Depending on the source language, and the operators defined in that language, the order in
which the operations are performed may vary. Also, there are problems of consistency
within the different implementations of the same language. For example, some FORTRAN
compilers allow for expressions such as

PROD = SRC .AND. MASK

which performs a logical bit-wise "and" operation on 'SRC' and 'MASK'. Other FORTRAN
compilers balk at such a construct. FORTRAN compilers that allow for the inclusion of the
"and" operation in this manner have a different set of operato, precedents than those that do
not. The DL must provide for all operations so that the documentation generated represents
the correct interpretation of the statement, regardless of which FORTRAN was used. (Note
that different FORTRAN preprocessors may be necessary, and the research approach allows
for this possibility.)

Automatic Documentation Methodologies for Software Maintenance Page 17

1
2.2.2.5 Operator Overloading

Although not perceived as something commonly used, operator overloading is relied upon
by most programmers. For example, when expressing an equation in most programming
languages, a programmer has learned to expect that an expression of the form of

a=b+c

is to be understood as 'a' is assigned the sum of 'b' and 'c'. In this discussion, consider only
numerical interpretations of this equation. The instructions generated for this equation can
vary widely, depending on the basic types of the variables 'a', 'b' and 'c'. If 'a' is of a basic
type that is significantly different than the result of the sum operation, the compilation
process must supply the conversions necessary to make the sum conform to the type of data
that variable 'a' holds. For example, if 'a' is a "real" number variable, and the sum is a
"fixed", or "integer" sum, then conversion from an "integer" representation to a "real"
representation is needed. This process of conversion is known as type coercion, or casting.

This information, i.e., where type conversions are occurring, is useful as it may highlight an
expression that may yield invalid results. For example, most computers can represent
floating point (or "real") numbers that significantly exceed the valid range of fixed point (or
"integer") numbers. Thus, if a floating point value is assigned to a fixed point variable, a
range test may be in order.

With these ideas of what would be useful information to convey to the programmer, the next
step was to bring all of these issues together in light of the technical proposal.

2.3 REEVALUATION OF TECHNICAL VALIDITY OF PROPOSED APPROACH

Having researched the documentation requirements, having designed data structures that
allowed representation of the candidate methods, and having completed the definition of the
DL, with its associated mappings to target source languages; a review of the proposed
technical approach was performed. At that time, the emphasis was the consideration of how
to implement the design. Since each language has a set of semantics specific to that language,
and since it was necessary to avoid getting overly complicated with conflicting rules and
contradictions between languages, the approach chosen was to divide the translation of
source-to-documentation process into three distinct operations.

First, a language specific translator converts the source into the intermediate representation,
or the DL. This is accomplished such that application of the DL semantics to the resulting
DL source is equivalent to the original.

Next, the documentation language compiler translates the DL into common data structures,
applying a standard semantic on all of the input. Semantics applied include such things as
name binding and code grouping (partial block recognition). The result of the compilation
process is a complete parse tree representing the input, with associated symbol tables.

Automatic Documentation Methodologies for Software Maintenance Page 18

I
Lastly, the documentation generators take the parse tree and symbol tables and create the
documentation. Since the compiler knows nothing of which forms of documentation are
ultimately to be generated, the parse tree and symbol tables contain all of the information
available (and derived). Each documentation generator extracts what it needs from the parse
tree and symbol table as it generates the documentation.

2.4 SUMMARY OF RESEARCH AND REEVALUATION

In summary, after surveying nine commonly used documentation methodologies, three were
selected as the most appropriate for providing useful information for maintenance
programmers. The survey of programming language concepts identified the areas of
commonality and potential problems as well. The technical validity of the approach was
examined, and was found to be acceptable in light of the research results.

At this point, the issues of documentation requirements were well understood. It was also
clear that the three-phase, modular approach to the problem was a viable one. Consequently,
the next step was to design the documentation language that would provide the intermediate
representation of the concepts of interest.

Automatic Documentation Methodologies for Software Maintenance Page 19

!
CHAPTER 3 - DESIGN OF THE DL

The approach investigated in this research was to attempt to develop a "universal"
documentation language having the following characteristics. It must be:

1. Sufficiently expressive to support the programming constructions of currently used
programming languages;

2. Flexible enough to allow for exact representation of the semantics of several source
languages in the intermediate representation; and

3. Complete. That is, it must be an intermediate representation which provides all the
necessary information, yet which can be easily used by post-processors in
generating the documentation.

The research began by reviewing commonly taught and used documentation techniques. As
a constraining guide, documentation techniques were evaluated and "scored" according to
their perceived usefulness in the software maintenance environment. From this survey, a
couple of techniques (particularly suited to the software maintenance environment) were
selected for further evaluation. The incorporation of documentation technique-specific
requirements were investigated and added to the requirements of the documentation
language.

Next, a survey of source languages: FORTRAN, Pascal, BASIC and C (with some
consideration for Ada requirements) was conducted. From this class of languages, a set of
representative control and data structures were derived, which allowed for an equivalent
specification of the source languages in the derived language.

Using the derived language as an initial basis, the design of the documentation language
became the focus of the research. Many of the details that had previously been glossed over
now became items of significant effort. Included in these items were: type conversions
(usually done implicitly in the source languages), the representation of constant expressions
and their "folded" results, and the lexical scope (name space management) of identifiers and
procedures.

As the definition of the documentation language proceeded, specification of the required
data structures (representing the 'compiled' form of the documentation language) were
developed. Several representative routines, written in source languages (FORTRAN,
BASIC and C) were translated to documentation language, and then transformed into the
data structure prototypes. From the resulting data structurt.s, recreation (by hand) of the
source language was accomplished, thus demonstrating the completeness of the
transformation.

Automatic Documnentation Methodologies for Software Maintenance Page 20

3.1 DOCUMENTATION REOUIREMENTS AFFECTING THE DL DEFINITION

Results of the survey of documentation techniques demonstrated that a significant level of
detail was necessary for those techniques which proved most useful in a software
maintenance environment. As a result of the survey, our predisposition toward "compiling"
the source to an intermediate language appeared to be correct. Intermediate languages from
which "code" could be executed provide not only the logic, but sufficient information for an

p analysis of the source code.

Although beyond the scope of the research, taking the approach of generating a full-blown
intermediate language allowed for future enhancements such as building a code optimizer
whose output would be optimizing recommendations which would allow for "tighter" code
to be developed. For example, in many higher level languages, programmers are not
encouraged to think in terms of how to express logic that is efficient, as the compiler attempts
to perform common subexpression elimination, etc. Errors in the code are frequently
generated when the user attempts to faithfully reproduce a common subexpression in many
places, yet fails to do so. By having an "optimization recommendation" as a documentation
output, programmers could be informed of where common subexpressions existed and
alternative code could be suggested.

Other uses of the intermediate language approach would be to recognize and warn of
expressions that appeared very similar, yet are different, under the presumption that these
slight differences may in fact be errors. For example, a common subexpression may be used
to select a particular element of an array, as in:

weap = tweap(cveh * 64 + cweap * 8 + cunit)

If the common subexpression "cveh * 64 + cweap * 8 + cunit" appeared in several places,
it probably is an important difference to find a different subexpression such as "cveh * 63 +
cweap * 8 + cunit", as an incorrect offset is probably going to be calculated. Note that it
would still be up to the programmer to determine whether or not the highlighted expression
was an error or not.

Still another future use of the intermediate language approach would be in the application
of a heuristic to identify possible erroneous expressions. Simple heuristics applied to
identifier, procedure and function names, for example, can reveal possible errors if there are
names that are easy to misread. In languages like FORTRAN, where there are no "letter-case
distinctions" in identifiers, or where identifiers are automatically truncated to some length
(e.g., seven characters), it is easy to confuse identifiers such as:

Visually Abbreviation Truncation (at 7 chars)

MIN10 DOWRITE DOREADRECORD

MINIO DOWRIT DOREADRESPONSE

MAX5

MAXS

Automatic Documentation Methodologies for Software Maintenance Page 21

A heuristic based on locating and displaying similar identifiers, according to several common
rules, like the three above, can help locate problems.

Primarily, the driving force for selecting an intermediate language representation for the
documentation language was the level of detail that many of the documentation techniques
required. When examined with a view to future tools that could be included, as those
suggested, this approach appeared to be worth the extra "front-end" effort.

3.2 TARGET LANGUAGE REQUIREMENTS AFFECTING THE DL
DEFINITION

Central to the approach was the development of a single universal documentation language.
This language, by this requirement, must have the properties of all supported languages in
that no construction in a target language would be unrepresentable in the documentation
language. As such, a program (represented in documentation language) must be as complete
(although not necessarily executable) as it was in the source language. Given the large
number of existing languages (both general and special purpose), some focusing and
elimination of languages was necessary.

3.2.1 RESTRICTIONS

The candidate languages were required to be general purpose, third generation languages.
The candidate languages must include such things as:

1. Enjoy popular "industry standard" acceptance. Since a large body of candidate
code, where automatic documentation would seem to be very useful, exists, esoteric
languages were not given consideration;

2. Be useful for writing almost any type of program, not being restricted to a particular
class of problems. For example, languages that solve equations, or other domain
specific problems were not considered;

3. Procedural languages. Most of the newer fourth generation languages enhance the
ease of programming by doing useful things without detailed procedural
specification. An advantage to using fourth generation techniques is that, generally,
there is a clear distinction between abstract and implementation details, thus
allowing high level design information to survive the implementation phase which
allows design-level (abstract) to remain separated from the detail level code;

4. Static binding. One common characteristic of most third generation languages is
that static evaluation of source is able to reveal the logic of the program. Our
research eliminated any languages that provided (in the language) for dynamic
binding (selection of the routine to execute at run-time); and

5. Overloading of identifiers. Ada allows for overloading of identifiers. For example,
more than one variable named 'i' may exist, provided the definitions of both
variables have different types. Selection of which 'i' is being referenced in the
program is done by the compiler. Which ' is selected is determined by the

Automatic Documentation Methodologies for Software Maintenance Page 22

program context or usage of 'P. Other languages allow similar overloading (such as

C++ and Modula), but these features were not required for the primary languages of
interest (FORTRAN, Pascal, and C).

For the "proof of concept" model, further restrictions were applied to increase the likelihood
of completing an initial implementation of the model. These included:

1. Depend on a language specific preprocessor to translate the source language into
documentation language;

2. Select only languages where the straightforward translation of the original source
was possible. In many respects, an exception to this rule was FORTRAN. For
example, to allow FORTRAN to remain in the candidate set of languages (simply
because of its popularity), documentation of FORTRAN input/output was
eliminated from the proof of concept implementation; and

3. Languages that did not present any unique problems, even though they enjoy a large
share of usage, were eliminated.

As a result of applying these restrictions, the initial source languages FORTRAN and C were
selected. Since the C language served as the basis for the documentation language
specification, a minimal amount of preprocessing was necessary, thus making it the initial
source language.

3.2.2 RETENTION OF ALL INFORMATION

Having used the intermediate language generation approach, it was decided to retain all of
the original logic in tuples of operator with multiple operands, organized in a parse tree. The
intermediate language was designed in such a manner that, if necessary, executable code
could be generated from the compiled code (or parse tree). Additionally, transformations
from source language input, to the parse tree, to source language were shown to create
equivalent (but not necessarily identical) output. Differences between input and output were
in the usage of "white" space such as spaces, tabs and comments.

Constant expressions, in addition to being reduced to values, were retained as intermediate
language expressions thus allowing the usage of constant expressions in data structure
declarations (array size definition), yet retaining access to the constituent parts used in
defining those "calculated" constants.

3.2.3 EQUIVALENT SPECIFICATION

It was important that source statements be expressible in the documentation language so that
accurate documentation of the actual code could be done. In FORTRAN, however, where
input/output is "built-in" to the language, some of the more complex interactions between
the FORMAT statement and the argument list proved too much for the prototype
implementation. As a simplification, specification of built-in input/output was not
considered. More research is needed in integrating the "run-time" dynamic nature of
FORTRAN FORMAT statements with an otherwise static evaluation of source code.

Automatic Documentation Methodoloies for Softwam Maintenance Page 23

I
Data structures were implemented in the documentation language, to support user data
structure descriptions. Support of the FORTRAN EQUIVALENCE, for example, is
handled by requiring the FORTRAN preprocessor to express the equivalenced variables by
specifying variant structures (records) in a union in which each structure overlays the
companion structures in the union.

Although each language tends to have a unique syntax for representing logic and control
flow, a significant amount of commonality exists. The classes of flow control statements
reduce to sequential statements and expressions, decision statements, repetition or looping
statements, selection statements, and subprogram or function execution statements. Control
structures in the documentation language needed to allow for all forms required by the
selected class of languages.

By mapping, by hand, the variants of statements allowed by the source languages, the
documentation language was developed, and confirmed to have the capacity to represent the
source language. It was found that the selected base language (X3J11 C) was capable of
supporting all of the data and control structures needed by the source languages.

3.3 DEFINITION OF THE DL

As stated, X3JI I C provided the base for the documentation language, DL. Support of all
of the documentation language requirements, however, required several deviations from that
starting point.

One area of extension was in constant and constant expression representations.
Documentation of data structures and their usage required that constant expressions be
evaluated in order to provide correct mapping of the structure/union definitions used in
FORTRAN EQUIVALENCE processing, and unions in general. For example, if a structure
contains an array, which has a constant expression specifying the number of elements, it is
necessary to state the storage requirements of that array. If the constant expression involves
several constants (symbols having values such as MAXRECS, or numbers such as 10),
recording both the expression and reducing that expression to a value used in storage
allocation calculations was required.

Another area that required extension to the X3JI I C model was support of nested procedure
definitions, as allowed in Pascal and Ada. A more sophisticated symbol table than required
by C was necessary to allow for lexical scope binding in those cases.

An area required for Ada, but not fully implemented in the documentation language was
overloading of identifiers. In order to allow for future inclusion of Ada as a source language,

the specification of the symbol table routines included structures allowing for name-type
binding rather than name-only binding. In this way, the compiler design was such that first
a name-type binding was attempted, and if that failed, name-only binding was attempted.
This design allowed the compiler to more easily recognize type conversions, and warn about

them.

Automatic Documentation Methodologies for Software Maintmance Page 24

The inclusion of FORTRAN required in the base language the implemention of type
complex. This required expression evaluation to overload the arithmetic symbols '+', '-'
'*' and '' in addition to assignment '=', and the respective augmented assignment '+=',
9-', '*f', and '/='. Some of the augmented assignments needed to be properly diagnosed
as invalid when using the complex type, such as 'A=', '1=' and '&='.

Extensions to the base X3J11 C language were resisted at every point in order to really justify
the extension. This resulted in a language relatively free of non-standard or quirky
specifications. It was interesting to note how far the X3J11 C specification went in satisfying
the requirements of DL, the documentation language.

For example, most compilers implement "constant folding" at a very early point in the
translation of the program. As a result, individual constants are reduced to values. This
"folding" tends to obscure, or hide (in many applications) the constants used in values
computed during the compilation, and their influence on other constants or constant
expressions used system-wide. To the user of automatically generated documentation, it is
generally useful to know both the "value" of the constant expression, and the constituent
constants used in creating that value.

3.4 VERIFICATION OF DEFINITION FOR DESIGN COMPLETENESS

Concomitant with the definition of DL, data structure prototypes were hand drawn to
represent the data structures that would be implemented. In addition, symbol table
management routines were specified that provided a minimal interface and yet were
sufficient to build the parse tree.

In addition to generating the symbol table structures, the structures were exercised for
completeness by parsing several routines, representing the full complement of structures
provided by the candidate languages. Samples of documentation language were provided
for all candidate language control structures to provide both documentation of how the source
structures mapped to prototype structures, and to exercise the symbol table structures.

Completeness was confirmed by traversing the resulting parse tree (again by hand) and
generating the source (using an in-order traversal). Enough effort and samples were done
to confirm that the proposed language mapped to specific structures, and that those structures
faithfully represented the proposed language.

3.5 SUMMARY OF DL DESIGN AND EVALUATION

Although the documentation language was initially based on the proposed X3J11 C
programming language, it was found that surprisingly few enhancements to that base were
necessary in order to retain the information that was "interesting" to those using the resulting
documentation.

Automatic Documentation Methodologies for Software Maintenance Page 25

U UI - I I I - au | U- it - -

!
CHAPTER 4- IMPLEMENTATION OF THE DL

DESIGN: THE RESEARCH PROTOTYPE

The implementation of the approach began with the DL compiler. Once the compiler was
considered fairly stable, work was initiated on pre- and postprocessors for it. Each of these
entities is discussed in this chapter, along with examples of prototype operation, and two
unexpected results of prototype development.

4.1 DOCUMENTATION LANGUAGE COMPILER

Using the data structure diagrams as a guide, the compiler was implemented to build the
parse tree and symbol table that represented the input DL. Work on the compiler was
essentially complete at the time of our Interim Report. For details regarding this effort, the
reader is referred to that report (Documentation in a Software Maintenance Environment,
DTIC reference number AD A185 892). The documentation language grammar was defined
in a modified BNF which was accepted by the parser generator yacc. Additionally, the
lexical analysis was specified using lex, which generates an FSM (Finite State Machine) that
recognizes language tokens from the input. (Both yacc and lex are UNIX utilities.)

4.2 PREPROCESSOR

Work was begun on a FORTRAN to DL preprocessor, but due to other considerations, did
not progress beyond the design stage. Several interesting results arose during that work
which bear discussion. Examples are provided, demonstrating the expected results of
translating FORTRAN to DL. Concepts discussed are:

" Data types;

* Expressions and statements;

* Control flow;

* Declarations / Common blocks / Equivalences; and

* Input / Output.

Problems and items of interest are pointed out in the relevant sections. The discussion is not
meant to be exhaustive, but rather to highlight some of the more interesting concepts.

Automatic Documentation Methodologies for Software Maintenance Page 26

4.2.1 DATA TYPES

Figure 4.2.1.1 depicts the anticipated mapping of FORTRAN data types to the DL.

FORTRAN to DL
ARRAY (I,J,K) (simple) array [k] [] [i]
BYTE char
CHARACTER char [21
CHARACT'ER*n char [n+ 1]
COMPLEX complex
INTEGER long
INTEGER*2 short
INTEGER*4 long
LOGICAL char
REAL float
REAL*4 float

Mapping Data Types From FORTRAN To The DL
Figure 4.2.1.1

In order to represent FORTRAN characters in the DL, one extra byte must be added because
the DL signals the end of a character variable with a null terminator, just as C does.

4.2.2 EXPRESSIONS / STATEMENTS

Looking at the conditional expression in the statement

IF (WAVEl .GT. 3188..AND. WAVEI .LT. 3195.) KWAVE = 7

the parameter WAVE 1 was passed by reference (standard FORTRAN). In order to achieve
the same functionality in the DL, the pointer must be explicitly specified:

ff ((*wavel > 3188.0) && (*wavel < 3195.0)) kwave = 7;

4.2.3 CONTROL FLOW

FORTRAN control structures include the DO loop, the block IF (in the newer versions), the
logical IF, the arithmetic IF, and the GOTO.

In the FORTRAN block segment in Figure 4.2.3.1, lines 8 through 20 effect a bottom-exit
loop. The same code is depicted, in the DL, in Figure 4.2.3.2, with a brute force rendering
of the loop. A more elegant rendering is found in Figure 4.2.3.3, replacing the FORTRAN
label/goto combination with a DL do-while loop.

(Throughout the rest of this discussion, the line numbers on the far left in code segments are
for the ease of identification in the text; they are not part of the original FORTRAN or DL
code segments.)

Automatic Documentation Methodologies for Software Maintenance Page 27

1 IF (IR.NE. IRPH) G0T0999
2 IF (PHASE .LT. 0. 1 .OR. PHASE .GT. 2.0) GOTO 999
3 IF(UNI.GT. 0. 1) INPT =IFIX(UNI)
4 EF(UNO.GT. 0.1)IOUT =IEFIX(UNO)
5 IF (UNC .GT. 0. 1) ISECND= IFX(UNC)
6 IF (UNF.GT.O.1) IHISTU= IFIX(UNF)
7 IPHAS = IFIX(PHASE + .001)
8 5 CONTINUE
9 IOLD = IPHAS
10 WRITE(IOUT,300) IPHAS
11 300 FORMAT(IH1///58X,17(IH*)158X,1H*,15X,1H*/58X,
12 *17H* COMBIC */58X,1IH* PHASE ,11,5H */58X,lH*,
13 *15X,IH*/58X,17(IH*))
14 IF (ECHO .GT. 0.) WRITE (lOUT, 200) IR, PHASE, UNI,
15 * UNO, UNC, UNF, ORDRS, ECHO
16 IF (IPHAS .EQ. 2) CALL DSPH2(ICLMAT, IPHAS, KWAVE, STRANS,
17 * ORDRS, [ERR, ECHO)
18 IF (IOLD .EQ. IPHAS) GOTO 555
19 IF (IERR.GT. 0) G0T0555
20 IF (IPHAS .EQ. 1 -OR. IPHAS .EQ. 2) GOTO 5
21 GOTO 555
22 999 CONTINUE

FORTRAN Control Flow Example
Figure 4.2.3.1

1 if (!(ir!= irph))
1

2 if (((phase <..1) 11 (phase > 2.0))

3 J((uni > 0. 1)) ioun.combic.inpt =ifix(&uni);
4 if ((uno > 0. 1)) ioun.combic.iout =ifix(&uno);

5 if ((unc > 0. 1)) ioun.combic.isecnd = ifix(&unc);
6 if ((unf > 0.1)) ioun.combic.ihistu = ifix(&unf);
7 iphas = ifix(&phase + &0.01);
8 L5
9 iold = iphas;
10 I*write */

14if ((echo > 0)) /* write*~/

16if ((iphas = 2)) dsph2(iclmat, &iphas, &kwave, strans,
17 &ordrs, ierr, &echo);
18 if ((old =-- iphas)) goto L555;
19 if ((*ierr h ibs)) gotoL555;
20 if ((iphas - 1 (iphas == 2)) goto L5;
21 gotolSSS,
22 L999:

The DL Rendering Of Figure 4.2.3.1
Figure 4.2.3.2

8 do (
<lines 9 through 19>

20 while (!((iphas == 1) 11 (iphas == 2)));

Better DL Rendering Of Loop Structure

Figure 4.2.3.3

Automatic Documentati Methodologes for Software Maintenance Page 28

Note that the sense of the overall test must be reversed from line 20 (4.2.3.1) to line 20
(4.2.3.2), in order to achieve the same functionality. The same reversal took place in
translating line 1 from FORTRAN to DL.

The reference to IFIX in line 3 (4.2.3.1) is a function call, so to achieve FORTRAN's pass-by-
reference for UNI, Figure 4.2.3.2 shows &uni. The translation of the WRITE statements in
lines 10 and 14, and the FORMAT statement associated with line 10 (all 4.2.3.1) are
discussed in section 4.2.5.

Another variable reference which has changed appearance is INPT in line 3 (4.2.3.1),
becoming ioun.combic.inpt in Figure 4.2.3.2. INPT is a member of a COMMON block, and
this transition is described in section 4.2.4.

4.2.4 DECLARATIONS / COMMON BLOCKS / EQUIVALENCES

The FORTRAN DATA statement, which serves to initialize variables, translates directly
across to DL, in that

DATA PASQC/ 'A', 'B', 'C', 'D', 'E', 'F'/

becomes

char pasqc[7] = 'ABCDEF';

in the declaration section of the translated code.

The PARAMETER statement, declaring and initializing symbolic constants, becomes a
macro definition in the DL:

PARAMETER (
* PI = 3.14159625,
* TWOPI = 2.0 * PI)

becomes

#define PI 3.14159625
#define TWOPI 2.0 * PI

where the symbolic names PI and TWOPI retain their case in translation as self-documenting
features.

The IMPLICIT statement, restricting the types of identifiers, has no analogue in the DL. It
would be consumed and incorporated into the set of control information that drives the
translation process.

The FORTRAN COMMON statement, or block, serves to provide the functionality of global
variables. The COMMON block maps cleanly to the DL union as follows: Given !hat the
statement

COMMON /IOUN/INPT, IOUT, ISECND, IHISTU, MAXVAL, MAXREC, INIT

Automatic Documentation Methodologies for Software Maintenance Page 29

appears in two subroutines: COMBIC and SDREAD, Figure 4.2.4.1 contains the DL
rendering of the common block.

1 union
2 struct
3 lon& inpt,
4 lout,
5 isecnd,
6 ihistu,
7 maxval,
8 maxrec,
9 init;
10) combic;
11 struct {
12 long inpt,
13 iout,
14 isecnd,
15 ihistu,
16 maxval,
17 maxrec,
18 init;
19 } sdread;
20 1 ioun;

FORTRAN To DL: Common Blocks
Figure 4.2.4.1

Following the DL access requirements, a reference to IOUT in subroutine COMBIC in the
FORTRAN code would become ioun.combic.iout in the DL version.

The use of the union construct also allows for the treatment of COMMON blocks which
have different names, or types, for some, or all, of their elements. The reader may note that
the dangers associated with mixing and matching types in a COMMON block also get
transferred to the DL representation.

EQUIVALENCES are treated in an analogous manner to achieve the "tagless" variant record
concept common to Pascal.

4.2.5 INPUT / OUTPUT

Input/output can be considered one of the most powerful of all FORTRAN constructs. The
associated FORMAT statements provide formatting control information for both input and
output. The WRITE and (simple) FORMAT statements contained in Figure 4.2.5.1 are
combined in the DL to yield one fprintf, contained in Figure 4.2.5.2, where the underscore,
"", depicts blank spaces.

WRITE (IOUT, 300) IPHAS
300 FORMAT(1H1///58X, 17(1H*)/58X, 1H*, 15X, 1H*/58X,
* 17H* COMBIC */58X, IllH* PHASE, 11, 5H */58X, 1H*, *15X,
* 1H*/58X, 17(1H*))

FORTRAN Input / Output Example
Figure 4.2.5.1

Automatic Documentation Methodologies for Software Maintenance Page 30

fprintf(lout, AL, \n, \n, \n,
m****************,', i

"* COMBC_*", \n,

___PHASE_%d *", iphas, \n,

The DL Version Of Figure 4.2.5.1
Figure 4.2.5.2

Execution of the fprinff in Figure 4.2.5.2 yields the output depicted by Figure 4.2.5.3. (The
"x" after PHASE is the single-space integer specified by II, and the number of blank spaces
has been reduced to 29, or half of the original 58.):

-- ---------- <top of page>

* ****** *1
* COMBIC_*/

___________________* */
* PHASE-xj*/

________________* */

Output Generated From Figure 4.2.5.2

Figure 4.2.5.3

4.3 POSTPROCESSOR

Next, the Nassi-Shneidermann Diagrammer was implemented. This design was partitioned
to allow for a modular approach. Consequently, a Nassi-Shneidermann Diagramming
Language (NSL) was specified. The compiler was modified to generate the NSL from the
parse tree. A second module was written that translated the NSL to printer output, so it was
now possible to go from a DL representation of a description to NS Diagrams.

4.3.1 NSL SPECIFICATION

NS Diagrams, in their standard form, were used as the starting point. [Marti85c] Extensions
to the standard NS Diagrams were incorporated to include information such as routine
headers and variable declarations, including name, type, and off-page connectors. To
simplify the process of creating NS Diagrams, a simplified language was developed, which
is called NSL.

Statements in NSL look similar to those statements available in many other languages. There
are constructs that allow for compound statements and iteration statements (for, while, until
and loop). Control statements were also added to allow for the control of the documentation

Automatic Documentation Methodologies for Software Maintenance Page 31

layout (page, page-break, routine header, and off-page connectors). Several examples of
"real code" were generated to verify that NSL was complete for the set of operations created
by the compiler, in the parse tree.

4.3.2 NSL STATEMENTS TO NS SYMBOLS

Concomitant with the specification of NSL was the form of the pictorial representation of

the NSL statement. Four classes of NSL statements were developed, which are Iteration,
Selection, Control, and Other.

4.3.2.1 Iteration Statements

Looping, or iteration statements, are used to represent those programming constructs that
control the repeated execution of a statement or group of statements, based on an arbitrary
condition. Loops are represented by 'while', 'until', and 'loop' structures. See Figure
4.3.2.1.1 below, for examples of iteration statements.

While <condition>
while <condition>

<loop statement> <
<loop statement>

do . <loop statement>

<loop statement> __

until
Until <condition>

loop Loop
I { <statement-i>

<statement-l>
<statement->

exitif <condition> Exit if <condition>
<statement-2>

DL To NSL: Iteration
Figure 4.3.2.1.1

4.3.2.2 Selection Statements

The conditional flow of control in the program logic is represented in one of two forms.
These are the 'if' and 'case' statements. In some logic, there are more 'cases' generated than
will fit on a single page or the same page as where the 'case' starts. To represent a long
case, the 'casecont' structure was added to specify 'case continuation'. See Figure 4.3.2.2.1
below, for examples of selection statements.

Automatic Documentation Methodologies for Software Maintenance Page 32

if <condition> Yes -_<conditio> N

e<statement-I> ____ saeetI saeets

<statement-2> <ttmn-> saeet-2

case <expression>

Case of <expression>
<expr-I>: <statement-I>

deal:break <expr-l> I <statenwnt-I>
default <sstatenennt-2>

case-cont

<exprI >:Case continued
<expr-2s: <statement-I> .<expr-l>-

break .- <expr-> <statement-I>
<expr-3>: <statement-2> [<xr3 saeet2

DL To NSL: Selection
Figure 4.3.2.2.1

4.3.2.3 Control Statements

Pagination and labeling is specified using the control statements. A simplification of the
design was accomplished by making it the responsibility of the NSL generator (whether done
manually or automatically) to keep track of how much information is on the current page.
See Figure 4.3.2.3.1 below, for examples of control statements.

subroutrine <string-> ri-> Rh. nTyp.

returnye <string-2> "Z

called~by <string-3> ...
calls cstring-4>...__ ____ _____

params <string-5> ...
extyvars <string-6>
loc-vars <string-7,...
metrics; <string-8>...

<statement-I> !v.h

<statement-i>
<statement-n>

<statement-n>

page <string>
<statement-I>

<statement-I >

<statement-n>
<statement-n>

page-break <string> D oNL oto

Figure 4.3.2.3.1

Automatic Documentation Methodologies for Software Maintenance Page 33

4.3.2.4 Other Statements

All statements not included in the Iteration, Selection, and Control statements are represented
in the class Other. Common expressions and assignments fall into this class of statements.
See Figure 4.3.2.4.1 below, for an example of an other statement.

DL To NSL: Other
Figure 4.3.2.4.1

4.3.3 NSL GENERATION

The generation of NSL from the parse tree proved to be a straightforward process. The
information in the subroutine header has proven to be a substantial improvement to the
standard NS Diagramming technique because in the standard form, no information is readily
maintained nor is it represented regarding the scope of the variables accessed in the rest of
the Diagram. This information (type and scope of variables) was readily available in the
parse tree, to include whether or not that variable is accessed or modified. As previously
stated, the design of the NSL interpreter placed the responsibility of what appears on the
page on the generator of the NSL.

Many of the additional control statements (page, etc.) were derived as a result of making
groups of statements fit on a page in a reasonable manner. Several pagination strategies
were explored in order to develop a good NS Diagram. The final strategy was to make every
attempt possible to keep the main logic of an entire routine on the same page. If the routine
was too long to fit, then blocks of sequential statements were moved to another page (using
an off-page connector), and if loops were present, the generator attempted to keep the loop
on the same page. It should be noted that a loop, regardless of its length, can typically be
represented in two lines ('exit' loops excluded) by using an off-page connector as the body
of the loop for one line and the condition as the other line.

4.3.4 NSL INTERPRETER

The NSL representation of the source code was interpreted to generate a Postscript
description of that source. That Postscript representation was then processed by a Postscript
engine on a laser printer, yielding the final NS Diagram.

Automatic Documentation Methodologies for Software Maintenance Page 34

4.4 AN EXAMPLE OF PROTOTYPE OPERATION

Figures 4.4.1 through 4.4.5 depict a C code segment being traced throughout the prototype
operation, yielding the DL representation, the associated symbol table dump, the routine in
the NSL representation, and the final NS Diagram.

long factorial (i)
long i;

if (!i)
return 1;

else return (i * factorial (i-I));I

main 0I
printf("the factorial of 10 is %ldn", factorial (10));

The C-Coded Routine

Figure 4.4.1

printf(char*, ...);

function long factorial (i)
long i;I
if (!i)

return 1;
else return (i * factorial (i-I));

function main 0

printf("the factorial of 10 is %ld\n", factorial (10));

The DL Representation
Figure 4.4.2

Automatic Documentation Methodologies for Software Maintenance Page 35

I

•Oct 3 S1: £3 . .Va Page Oct 21 10.13 l•go t tost sga Pege 2

Paosing input
2: 3: 4: 5: 6: 7. 6: 9: .t: I1: 12: 13: 14: 1S: 16: bljavemt: OnChO"

1: &a: 19: 20: bl..t: ,n)

Dumping *I, internal table Inforetifn o1, Tp1E tweed 3/9 entres) of OT-TYM~Note: !' &#*or ize full cc ess eq uirots

Block Inds zoo "A" Clas line
Id• Level Nome RiO C. . ..

-- chor1/ 0 (1 ?*turning TV-Y W 2
a a anchor l/ I (1 Ptotwning TYFUC 4
1 1 axtenal 1/ 2 mear pointer TYrEM 4 t

2 2 printf
4 factors*, TIN.V tweed 3/9 entries) of OTtYiCO.
4 2 main 34O Ple Usoge TIp@ At

Block 00 ancr (Level: 0) 1/ 0 factorial UsWCL I/ I

63-.Swpe: S3? M 11 1 00ss USpect 1/ 0

61.Poturn: <no return type> 31 2 printf L.jWCL 1/ 0

6 Lfsarunt: >no paret> TKJLOK tweed 3/9 entries) of 0r.3LOCK& 1 _ f o r a l : . n o " @ > d 0 il b 0 me u m

TILojWE (used 10/20 entries) of 0TTYPE

Note: I!, after Ita - full acceos requires ft pointor. 1/ 1 2 Prnt#

Ids ie.. C30DS @is* Reforencos 1/ 1 2 Factei
S/ 2 4 Amain

01 0 csplax TYCOI9PLEX a

G/ I default T -AIAck *a *pintf (L.val:)
of TL.IWE

0p

0/ 2 defau lt conog TYCI4T a Value: 0 61t sPe: GTPfoaT

0/ 2 double TVDPL a b1retps: default

0/ 4 double cooifes TYDCHPUEN 16 lj.wPaest: esternaol

Of 9 *nuweoator TYPUT 4 Ml-foal: 2ULVAN / 0 T•L VM 2/ 1

0' A float TY-FLT 4

0/ 7 prototype to TVYFAN 4 TBLYM (Wod 2/9 *"trios of UTIYqoL

0/ • proeotupe near TYJ4EAM 4 IdO V Usa0e TVp At

O 9 stgned chOr TVC)An 1
0/10 signed long TYVLo 4 2/ 0 7 SZPMM 1/ 2

0/11 signed *Nort TY04aT a 2/ 1 ?l U•JPMRM O/t

0/12 unsigned char TVCHAN I

0/13 unsignod long TY_L.g 4

0/14 unsigned short TY KT 2 Biock 0 3 factorial (Lovl: 2)

0/13 void TY RD 0 6 tOgoe: oY7.AC
TV-Y A 2 blrotuv: signed long

of Tol.I /p1OOnt: *utornel

of 73ilvpc 011
0 /17 meiglnod TEASA 2 ifws:TI.Vq3

of TOb. TW, 0/14 TULCmwT (od l/I entries) of OT-TPE

T _iJLOCK (ueod 2/1 entries) of CTDLOCK 16e4: -0 . oftO ste - fCl se ortoira

Id • sibt a tlie _

0/0 1 esternal 3/ 0 leas constant T_C4NsT 4
TL WA (wod I/1 entries) o0 OTSYMGL.

Bloc&• # o external (Level: 1) RdO Ms Usage TIp* A

6 g_*•po: D1JL0C 3/0 I &MJrI 0/tO
• 1_net-: Cno return SIP*>

The Symbol-Table Dump
Figure 4.4.3

AutmaM c Documentuiton Mehdxologies for Software Maintenane

Fog@ 2 Oct 21 t0 13 19a orIest eva rose 3

TDLC6DE (ued 2/9 entries) of 07TYPE
Id0 Quadruple lequence

OF OT-TYPE 3/ 0 001100000001 TBLJAD 3/ 2
sees requires far pointer.

site References 3/ £ 00310000000 TSLGAD 3/ 4 TISLUAD 3/ 5

2 TILTYPE 0/ 1 1)
4 TDL_TVPE 0/10 () TPLGIUAD (sed s9 entries) of OTGWAD
4 to TIL_TYPE 0/ 9 near/volatile Id 0 Operation Left light Third Result

6f OT.SYmOL 3/0 ! TgL..VAR 3/ 0 (none > C none > TELTYPE 0/ 1
Tgpe Attributs/pfoerencvI 3/ i return TSL_..YPE 0/10 TBL_C0ST 3/ 0 < none > TBLTYPE 0/10

-- 3/ 2 if TDLGUAD 31 0 TSLGUAD 3/I TLGUD 3/ 7 < none >
' I £ 3/ 3 - TSL VM 3/ 0 T1L._CNT 3/ 0 < none > TSLTYPE 0/10

i i/0 3/ 4 push TBL_'TYPE 0/10 TSLJAOD 3/ 3 < none > T3LTYPE 0/10
if 0 3/ 5 call 1L._VAR 1/ 0 < none > C none > TLTYPE 0/10

3/ 6 * TILVAR 3/ 0 T3LCOOE 3/ 1 < none) T3LTYPE 0/10

0 01 3LOCK 3/ 7 return T1LTYPE 0/10 TlLQUAD 3/ 6 C none T9LTYPE 0/10

Iloch 0 4 main (Level: 2)
bltlps: ST_ftN
bI.return: default
bljaront: asternel
bl_fermel: Cneno)

.vol: 2£
TL._CCNBT (used 2/9 entries) of OT_TYPE
Note: I' after ese - full access requires far pointer.
IdO Nmeo Close Size References

._VAP 2/ 1 -
4/ 0 long constant TYCOINT 4 Value: 10

f OTWfMv
L 41 1 *trio# constant T1YCOMT 29 Value: "the factorial ef 10 is ld\n.

Tjpe Attributes/Refertnces
-- TBL_CIE (used 3/9 entries) of OTTYPE
/ 2 IdO Suadruple Sequence

4/ 0 001100000004 TDL_CCOE 4/ 1

vol: 2) 4/ a 002100000003 TBL UAD 4/ 2 TSL_.SAD 4/ 3 TIkL GUAD 4/ 4

4/ 2 003100000002 TLWJAD 4/ 0 TILGUAD 4/ 1

fTL _GD (uod S/9 entries) of OT_&JAD

F OT TYPE Id e Operation Left light Third Result

es requires for pointer. -

lis References 4/ 0 push TLTYPE 0/10 TDL.CUNT 4/ 0 < none > TBLTYPE 0/10

4-- 4 1 call TILVM 1/ 0 < none > < none > TSLTYPE 0/10
-' 4 Value: 1 4/ 2 push TILfTYPE 1/ i TDL-CCNBT 4/ 1 C none > TLTPE 1/ 2

4/ 3 push TILTPE 0/10 IU._CODE 4/2 C none > T9LPE 0/10
. OTf aSYM . 4/ 4 call TBLYM 1/ 2 < none > Hnos > TLYPE 0/ 1

ipe Att Ibutes/Rforncse

Page 36

subroutine
factorial,
return-type 'signed long',
calleLby

calls
factorial,

params'signed long i',
exLvars

lobcvars

metrics

if (!i)
return (1);

else
return (i * factorial(i-I);

subroutine
main,
return-type default,
called-by

calls
factorial,
printf,

params

ext-vars

ocyars

metrics

printf("the factorial of 10 is %Id\n", factorial (10));

The NSL Representation
Figure 4.4.4

Aumic Documentation Methodologies for Softwam Maintenance Page 37

al _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _

02

a.'- .3

;~ Z

~ Z

Autoaw wumemwnMefdol~s fr SotwmMmnnanc P~e 3

I
4.5 UNEXPECTED RESULTING TOOLS

There were two results of this research that were not expected. A "Railroad" Diagranmer

was developed, and the NS Diagrammer was useful as a stand-alone processor.

4.5.1 RAILROAD DIAGRAMMER

Debugging a grammar written in Backus-Naur Form (BNF) can be a tricky process. The
grammar for the DL, although based on X3J II C, was written "from scratch". In some cases,
it appeared that the productions were not being processed as expected. It was determined
that processing and printing the grammar in an 'order used' manner might prove useful in
finding the problem. This utility was written, and when the output was inspected, it appeared
that automatic generation of railroad, or syntax, diagrams would be a straightforward
"reformatting" of the output.

4.5.1.1 Railroad Diagrammer Strategy

In the initial output, five classes of objects were generated that appear in Railroad Diagrams.
These were tokens, punctuation, productions, empty alternatives, and recursive productions
where:

" Tokens are the string of letters, and digits that represent keywords and identifiers;

" Punctuation refers to typically single character tokens that do not fit the rules that
recognize regular tokens;

" Productions are rule based sequences of tokens;

" Empty alternatives are used within a production when a token, or production, is
optional and may be omitted; and

" Recursive productions are productions that allow for multiple successive
occurrences of themselves.

Two more objects: continuation lines and off page connectors, were then added to nicely
display the grammar rules that had alternatives that did not fit on one line, or rules too big
to fit on one page.

4.5.1.2 Railroad Diagrammer Implementation

First, each object was described in the graphic display language Postscript from Adobe
Systems. Then these Postscript descriptions were collected into a library. The Diagrammer
was built as a two-phase system, where the first phase consumed the rules one at a time,
parsed them into the proper collection of objects, and constrActed another file containing
calls to the library routines. Once the complete Postscript description of the grammar had
been generated, it was processed by the Postscript engine on a laser printer, yielding the
pictorial representation of the grammar.

Automatic Documentation Methodologies for Software Maintenance Page 39

4.5.1.3 Railroad Diagrammer Example

A short example of the Railroad Diagrammer operation is contained in Figures 4.5.1.3.1 and
4.5.1.3.2 below, and is taken from the documentation of yacc. [Schrei] For a more complete
example of a Railroad Diagram, the reader is referred to Appendix A of this report, which
contains the Railroad Diagrams for the DL.

%token DING DONG DELL

rhyme
sound place

sound
DING DONG

place
DELL

Example Grammar Specification
Figure 4.5.1.3.1

rhyrne soundL Iplace

sound 2DN

place

Railroad Diagram For Example Grammar
Figure 4.5.1.3.2

4.5.2 STAND-ALONE NS DIAGRAM GENERATOR

Because of the way the NSL processor was implemented (see Section 4.3, Postprocessor,
for a detailed description), it operates independently. This has proven to be quite useful as
an alternative way to generate user-level logic diagrams. Unfortunately, most users still feel
more comfortable with the older unstructured Flowcharts.

Automatic Documentation Methodologies for Software Maintenance Page 40

4.6 SUMMARY OF IMPLEMENTATION

As Figure 4.6.1 below portrays the research prototype is a multiphase system, built to allow
for the examination of intermediate results as they are generated. Every file built (depicted
with the barrel symbol) is capable of producing output to a monitor, or to hardcopy. ThisI
feature allowed for the progress to proceed in an organized, well-tested fashion, knowing
each step was built on correct input from the previous one.

DL Parse Tree Generation
C C DL

Language to ---- w Source ---

Program DL File Symbol Dump NSPP language
Translator Routines generation routines

S(-a ojon) [(-n option)

Symbol NSPP
Table Source
Info ile

NSPP
Parser

Post-
Script
Files

PostScript

Engine

(laser printer)

Research Prototype Dataflow Diagram
Figure 4.6.1

Automatic Documentation Methodologies for Software Maintenance Page 41

-. I - I - -ll • - -

CHAPTER 5 - CONCLUSIONS

5.1 FINDINGS

To reiterate, the goals of this research project were to:

1. Research documentation techniques specifically appropriate to the software
maintenance environment, as contrasted with methods commonly used in
development;

2. Summarize the programming language features that were appropriate for the class of
potential source languages for the documentation tool;

3. Research the design of a general documentation language, focusing on the ability to
handle a selected class of languages, using the proposed approach (structured in the
three categories of preprocessor, compiler, and postprocessor); and

4. Determine if the proposed approach could be implemented to automatically

transform programming language source code into documentation.

At this time, the end of the contract, we believe that we have met our goals as follows:

1. The research into the documentation methodologies which are currently in use
successfully led to the knowledge of the documentation and output requirements
perceived to be relevant to, and by, maintenance programmers;

2. The research into programming languages and language features has led to an
understanding of the input requirements for a maintenance tool;

3. A general documentation language was developed, containing all of the features of
the selected class of target languages. This language was implemented, i.e., a
compiler was built for it, as the centerpiece of a prototype maintenance tool; and

4. The three phase design was partially implemented, the DL compiler is now
essentially complete, and the postprocessor (for modified NS Diagrams) is also
complete. A C to the DL preprocessor is complete, and the research and design for
a FORTRAN to the DL preprocessor is also essentially complete. As such, the
prototype accepts working C code and generates NS Diagrams for it.

The work on this project led to some interesting conclusions. The first of these was the
determination that none of the methodologies in use today are really optimal in their utility
to maintenance programmers. While NS Diagrams, and others, are familiar to programmers
and to many knowledgeable users, the optimal tool would present a new methodology
providing graphics, text, detail, overview, static structure, and dynamic dataflow together in
a visually-appealing, user-friendly way.

The second conclusion is that the generality requirement is indeed a requirement, and not
just a consideration of interest. Programmers working with different languages have widely
different perceptions about what is useful documentation.

Automatic Documentation Methodologies for Software Maintenance Page 42

5.2 BENEFITS FROM THE WORK

Several unexpected tools were revealed during the implementation phase. These tools have
proven useful, and have actually been used to locate errors. Postprocessors have proven to
be relatively easy to implement, due to the partitioned approach, which converts the compiled
structures into documentation. Further, as designed, the first stage of the NS postprocessor
generates information which is useful (as is) to programmers, or which could be used by
another postprocessor that was designed to display similar information.

A grammar bug was discovered in TSI's Development Environment for Efficient
Programming (DEEP) by examining the output of the Railroad Diagrammer. TSI's need for
generating program logic diagrams may have been automated, providing a switch from
standard Flowcharts to Nassi-Sh ,eidermann (NS) Diagrams.

Additionally, it was interesting to learn that out of the plethora of documentation techniques
available, most were not particularly suitable in the maintenance environment. Most
documentation techniques are oriented toward the design of new software applications.
Top-down design techniques treat the design phase similar to an outline of the application
to be implemented, where the details are filled in after the architecture of the applica ion is
completed.

As such, desigr documents frequently gloss over details to provide as abstract a view as
possible, whereas the resulting programs are more concerned with implementing something
that behaves according to the abstract design. Generally, once low level detail is added to
a design, it becomes difficult (if not impossible) to separate out those statements representing
abstract high level structures from low level implementation details.

In a third generation language, such as those we considered, the segregation of high level
abstract information from low level details would require some form of marking, or

signalling the different components (high level versus low level elements). Without
introducing some form of signalling into the original program (the one being documented),
this separation of abstract code from detail code, is impossible.

Without separation of abstract and low level detail, only detailed or low level documentation
results. This is useful in its own right, but does little to introduce an unfamiliar maintenance
programmer to the code being documented, particularly since the detail is still
overwhelming. Low level documentation has the most value, because when examining a
program in a different form aids in finding the errors introduced by coding style, or
misunderstood language constructions.

For example, during this project, programming errors were revealed because the
documenting process ignored "visual" layout clues which mislead proper interpretations of
the true meaning of the code. Cases in which this type of error occurred included evaluation
of nested if/then/else statements and grammar rules (in the grammar of a compiler).

Automatic Documentation Methodologies for Software Maintenance Page 43

I
5.3 ROBLEMS WITH THE APPROACH

At this time, we perceive two problems with the research. First, the prototype operation is
batch-oriented, not interactive, and consequently is not perceived by programmers as
optimally usable in a real world environment.

Second, no "validation" of the approach and prototype has been performed. This validation
must include allowing real world programmers to use the prototype output, and determining
how well that output facilitated their understanding of the code. This would require a
significant amount of additional research involving the development of a user-interface.

5.4 FUTURE STUDY AREAS

There are two obvious areas for future study remaining at this time. The first area is the use
of graphics in the maintenance environment. When this project began, the Macintosh was
not yet a viable system and windows were unavailable on other systems. The use of graphics
and windows should be examined with regard to hypertext-oriented applications that would
provide on-line, interactive documentation.

The second area involves further development of the concept of relationships between
grammars. Given that a finer definition of concepts common to all languages can be made,
it should be possible to develop a "table-driven" translator. In such a case, a tabular mapping
of the common concepts into the DL would serve as the foundation for all individual source
language to the DL translators. These individual translators, whether FORTRAN, Pascal,
etc., would access the table for the treatment of the canonical concepts, and would use ad
hoc treatments for concepts unique to that language.

These translators would be designed to generate "good", idiomatic DL, not the brute force
rendering common to the translators available today. Obviously, if "good" DL could be
generated, then it should be possible to replace the DL code with code specific to another
programming language, that is, generating good, idiomatic C or Pascal from FORTRAN.

Automatic Documentation Methodologies for Software Maintenance Page 44

I

APPENDIX A

DL RAIROAD DIAGRAMS

RAILROAD DIAGRAMS for DL GRAMMAR

emalma..definition list

NOTE Heay brdeid b x nte ecrsvdefinition. -

RAILROAD DIAGRAMS for DL GRAMMAR

___e__

external-definition 4

<(Ypnd> 31 mA-z

RAILROAD DIAGRAMS for DL GRAMMAR

internaidefinition funtio
<opnd> 4<

OR deiuLtiont

def nd> 99

OR [definition2

OR nUdfnto
<o ,id> 10H

opt-declaration.specifiers

<opndA 6

RAILROAD DIAGRAMS for DL GRAMMAR

Iopt.declaration..speciflers m t

I declaration-specifiers

A- 4

RAILROAD DIAGRAMS for DL GRAMMAR

declaration~specjist I ~declaration-..spec
I<opnd> 81nd

OR

(~ declaration-spec-list

I declaation seclaaion-Fipsl-e-
<opnd> 99

OR

A- 5

:1 RAILROAD DIAGRAMS for DL GRAMMAR

struct Spec-se

I<opnd> <pd

paramter..spec

OR F7 1-

A-6

RAILROAD DIAGRAMS for DL GRAMMAR

I storage...cf ss...s eferA T

OR ETR

OR SGE

OR SAI

OR RGSE

OR USGE

OR VLTL

A-7

RAILROAD DIAGRAMS for DL GRAMMAR

type-specifier CA

OR SHORT

OR COMPLEX

OR

OR
LOT

OR-

OR Q -

A-8

RAILROAD DIAGRAMS for DL GRAMMAR

I complex jpe..spcifier struct,.or _union
I<opnd> 141 itgr 4

<string>

OR

A- 9

RAILROAD DIAGRAMS for DL GRAMMAR

complex-ype..definition tutounn

stnict-definition-list
<o nd> 17

<stritA- 10

RAILROAD DIAGRAMS for DL GRAMMAR

O R IDE NTDNTFFER

<string>n 16

Istructdefinition list stnicF-ef0 71-oE<opnid> 171 No 8

OR

A-li

RAILROAD DIAGRAMS for DL GRAMMAR

struct-definition panTeFtiftiol-
I<opnd> <o81d 19

I pan~n_definition I struct-definition 1
I<opnd> 191 N<opnd> 20H

OR f struct-definition2

A- 12

RAILROAD DIAGRAMS for DL GRAMMAR

struct-definition i struct-specifiers

<opnd> 20 N<op d> 22

struc....secif e c srut...secis

I~ ~ ~ <otd 23C~ 2 ' zn' 1

declaA-io3

RAILROAD DIAGRAMS for DL GRAMMAR

declarator2 I decarator4
<qpnd> 231 <= <opd> 24

I declaitor4 eclIENTtFIE
I ~~<pd 241d 4 sri

A- 14

RAILROAD DIAGRAMS for DL GRAMMAR

dclarator5 251aat 2 2

OR Faattr7K

I~ ~ ~ O declarator3 . 2ir~-
I<pd 23nd 21

OR nm-ai

OR &X-

A- 15

RAILROAD DIAGRAMS for DL GRAMMAR

amy-series 27 a my.ntry

___________________ 28H>2

A- 16

RAILROAD DIAGRAMS for DL GRAMMAR

Iarray-.entry 281#

<opnd> J2

op.cntntepeso

<qp~idA 29

RAILROAD DIAGRAMS for DL GRAMMAR

I opt.constant-expression29 /em y/

~constant_-expression

A- 18

RAILROAD DIAGRAMS for DL GRAMMAR

conditionaLe..xpression

<opnA- 19H

RAILROAD DIAGRAMS for DL GRAMMAR

_______________________________________Ado__

logical OR jexpression314

logical-AND-expression1<op~nd> 33H

LOR

A -20

RAILROAD DIAGRAMS for DL GRAMMAR

JlogicalAND jexpression
<opnd> 331

LAND

OnlsvR-expression

A-21

RAILROAD DIAGRAMS for DL GRAMMAR

Iinclus iveOR_.expression

<opntd> 34

excluiveO~expe csi I % xpess ANDxreso
I <opndd> 351

A AND eO_.epression
<C) 'id>

excluiveO _ expA-22o

RAILROAD DIAGRAMS for DL GRAMMAR

IO AND-expression '

A-23

RAILROAD DIAGRAMS for DL GRAMMAR

<op <o code

relational -expression

<opndA-38

RAILROAD DIAGRAMS for DL GRAMMAR

I relatilntionaexprresiinn

< o p n d > 3 8 1 -

OPREL
<0 code>

shFx~preio71-

A- 25

RAILROAD DIAGRAMS for DL GRAMMAR

shift-.expression

additive-.expression
<0 nd> 40

OR :shilf-expA-26o

RAILROAD DIAGRAMS for DL GRAMMAR

I additive -expression

multiplicative-expression
<o iid> 42

ORMINU

+ multiplicative-expression
<opnd> 42

OR
ad-bea

additie-expess41

<onA- 27

RAILROAD DIAGRAMS for DL GRAMMAR

add_break
41

i ~~additive expression -<//>4

- multiplicative-expression
-[<opTnd> 42

A-28

I RAILROAD DIAGRAMS for DL GRAMMAR

I rultiplicative..expression I texr~so
I<opnd> 42 IN on> 4

SOR

-

muiriplicativeexpression
<oYpnd>I 42

cast-expression
I]<op, > 43

I OR

I <opndS> 42

t cast-expression

<opnd> 43

OR

(multiplicative-expression
... <yprid> 42

% cast-expression

<op,,d> 43H
~A-29

RAILROAD DIAGRAMS for DL GRAMMAR

cast-exprcssion unary..expression

<qpnd> 431 <ond> 44

A- 30

RAILROAD DIAGRAMS for DL GRAMMAR

I unaryexpression postfFixprsio1.

<opnd>> 44j

OR DC

unaryjtxprss45

<opnA- 31J

RAILROAD DIAGRAMS for DL GRAMMAR

unary__expression

<op,,> .- 44II

OR SIZEOF(

parameter
<o nd> 58

postfix 461

postfix-expression2

<opnd> 47H

OR constant
<opAd> 563

A-32

RAILROAD DIAGRAMS for DL GRAMMAR'

I postfix-expression2 Iprimazy-expression
<qpnd> 4 qjd50

(ofx-p p r gmentepesinls
<qond> 47

OR ps ra

A-3

RAILROAD DIAGRAMS for DL GRAMMAR

post-.break 1I 4 1

IDENIVIER
ZStriyl >

IDENTOFIR
<strinz>

OR ps-ra

A- 34

RAILROAD DIAGRAMS for DL GRAMMAR

Ipost...break2

1NCR

DECR

priaiexpeORo expression

A- 35

I RAILROAD DIAGRAMS for DL GRAMMAR

expression

assigninent -expression
<opnd>52

assignmenuexnt-sxionss1on

<opnA- 36

RAILROAD DIAGRAMS for DL GRAMMAR

assigrnent-operator 1
<opeode> 5311% C

OROPS

opt.argument -expression-list /emt /

I <oopd> >

A -37

IJ RAILROAD DIAGRAMS for DL GRAMMAR

xargumensexpressionlist

<ond o55d1

assignentexpression on

<opnd> 5 2

A -38

RAILROAD DIAGRAMS for DL GRAMMAR

constant CO TFLA
'<opid> 561 N < d

ORCNTNGE

ORCNSHRCE

OR NSTSTFLOAT-co< <,,d>d

A -39

RAILROAD DIAGRAMS for DL GRAMMAR

I unary-operator <E&UAR
<opcode> 571

OR
* UAR

OR +UNY

OR -UNR

OR-UAY

ORUAR

A-40

.1 RAILROAD DIAGRAMS for DL GRAMMAR

I ______ ________

<opnd> 581

paranieterlseiir
~ <o d> 61

I paramcter...speczfiers s

paranieteL spcC list

A-41

RAILROAD DIAGRAMS for DL GRAMMAR

paramneter-specjlist paraFer-T7-+
<o iid> 01<op'ad> i

<ond

Iparameteresi

OR parameeer

<o0d 62> 6

A-42

RAILROAD DIAGRAMS for DL GRAMMAR

I<opftd> 621 on> 6

OR I7ar71-r

pararater3rI

I<opfld> 631 <opnd> 27H

OR QQ

A-43

RAILROAD DIAGRAMS for DL GRAMMAR

pparameter-list

I ~ ~ pd 65nd> 61

ELLIPSIS

RAILROAD DIAGRAMS for DL GRAMMAR

I mint 67! a <~n>6

OR nameAli5

RAILROAD DIAGRAMS for DL GRAMMAR

<qn>61<integer>691

limited-specifier

<integer> 70

I <opnd> 68 <inte6er>69

lhnited-specifier

<i nteger> 70H

<i 69

OR NA

OR FAD

A- 46

RAILROAD DIAGRAMS for DL GRAMMAR

<integer> 701

OR VOLATILE

ORCOS

declaratorl elrtr<opnd> 711 <otnd>3 26

opt. initialization

<opnd> 721

OR opt.initializatio 77-

opt.initialization / empty /
<opnd> 721j

OR initialization

<opAd> 73

A-47

RAILROAD DIAGRAMS for DL GRAMMAR

Iinitialization

A-48

RAILROAD DIAGRAMS for DL GRAMMAR

I<opnd> 741

assigunent- expessio

RAILROAD DIAGRAMS for DL GRAMMAR

initializer list intilieI<opnd> 751 <pd 4

________________ N<opd> 7 5

II declaraorilis
<ond 74pd>7

Ado5

RAILROAD DIAGRAMS for DL GRAMMAR

I struct-definition2 I struct-specifiers
I<oprnd> 771 <opnd> 21

struct-null-definition struct-specifiers

IO enuueratotli-tist
I <opnd> 7917

A-5i

RAILROAD DIAGRAMS for DL GRAMMAR

enumerator<opfnd> 01

I enumeration-constant
< opnd> 81

OR

enumeration-constant -

<ootud> 81

[subrangejte ral 82 SR T

A-52

RAILROAD DIAGRAMS for DL GRAMMAR

declarattor

opt~ppan-declaration list

Lond 8 04 d>8

A-53

RAILROAD DIAGRAMS for DL GRAMMAR

parm_declarationjlist Pmdfnto

O R
-

compoundlastatement

<opnopn86

parm-deiA- 54

RAILROAD DIAGR71AMS for DL GRAMMAR

A pntcnal derwiliionjist
/em y1

I <opnd>- 871

I intintemaijefinitilnjist

<oppnd>

A- 55

RAILROAD DIAGRAMS for DL GRAMMAR

opt. statement -list/em y 1

<qpntd> 891

OR statement-list
<opnd> 90

statement-liststemn

I~<pyd 91H> 0 < i

A- 56

RAILROAD DIAGRAMS for DL GRAMMAR

statement labeledstatement
<qpnd> 91 <opnd> 921

OR compound-statement

OR

OR

selection_statemnent

<opnd> 96

OR jup-t at emen

A-57

RAILROAD DIAGRAMS for DL GRAMMAR

I labeled dstatemen I IDENi S
<opnd> 921

statement

<opnd> 91

OR CASE -

statement
<opAd> 915

OR CAEAL

J staeme tatemen

<opynd> 91

A-58

RAILROAD DIAGRAMS for DL GRAMMAR

I expression statemnent j C; opt.expression
<qpnd> 931 N ord j9

opt expression / mt

OR expression

A-59

RAILROAD DIAGRAMS for DL GRAMMAR

selection-statement Iif-statement
<opnd> 951 <opnd> 96

statemenemen
<opnd> 91

LA-SE

RAILROAD DIAGRAMS for DL GRAMMAR

I <opnd> 961

A-61

RAILROAD DIAGRAMS for DL GRAMMAR

iteration -statement J WMiLE(
<opnd> 911

expression
<opfld> 51

statement

OR D ttmn

W IHILE

-twmetA-6

RAILROAD DIAGRAMS for DL GRAMMAR

I jump-staternent 8C GOO

OR CNIU

OR

A- 63

RAILROAD DIAGRAMS for DL GRAMMAR

Idefiition i
<opnd> 991 ~ *I

defclnrtion2

<qFnd> 1+

delaatrJ)s

<qpnA- 64

RAILROAD DIAGRAMS for DL GRAMMAR

nulLdefinition

external declarator list

<Tond>

exteral_declarator

<0 nd> 10H

A- 65

RAILROAD DIAGRAMS for DL GRAMMAR

external declarator declarator2

<oppt> 260

OR 7 ecrtor71-

A-66

APPENDIX B

IATHRZL

AN IMAGE THRESHOLDING ROUTINE

4;

0 0 M 41
a' x xA'

N0 + N

> -44 4) -4

*~ -4

0- 'a 1 4) - '
0 . 0%) 0 0 *-. N1

S-.4 0) 0 4j 4) 0
14 w-. c0 4 1W 400

o4 " + %* 04 A ra Ma4 -4
- .- a AMQ- 0

0.40 - N 41 x %V c +- i I N4 a

H. H rx -4 - 4 X' +4 -
44 4 ,- 0 V) 0- 0

-4 44 - 4 M 44) 0 4

N C G~a a' 0.- 411

0 -4 > V1 -4 - 4) - 4

0 04 a' 4) 4 0 Qa 0
490 V 0 14 to

* * 0 V1 -- -1 41 -41 A t494 4 - 1 4
S0. 4-- 0. 000 $4m

4J 14 %4. 0- 414
* 4 0 41 - * AC 004 %4t3 W0

Is 0 > a' 49. A0004A 6'.144404
0 9 0 0 $4 040 V IV. C44)

44 i 4% a' 0.0 4.4 41 c at'0K0 W44
'- 4 -4 03 03 0) 044 0~
4 1 0 . t).. .- 414- 41 9 0 E-414fl
OR=1 14 a go -4 4) -a ' 'a 0'. Aj41tt 14))4

0 41 *- 014 0.-0 4 - 0. a .1 =0 $
1 4 - 04 10 04X0C4"4 4p II 11 0% Nf a
a'0a a N . 0 -' 4 N1 1-4 it' toai U 4>>

0-0 II w 1 0 0 '4.40%- 14 W 4 rI 0
00~ c4 4)441. '4. N4% 4)14. 0 % J 4 - 1 4141

41 H a901 0.- -4 Q 0 M 4 V 4J c n-4t %
4. .- 40 , 0 -- 0 0 a t O00 - O t~)) ~ 14

04 "-' we. 0'44 4

41 V 4 4 4 44 4 9 X % 0 t % -4 4 r- - O

a j.4 00 4 0 4 j t

44 4
*4 A. 40 00 4) 0a4)O
4 r4) -4 (p40 0. i1 41 A
4 $. 4)4) w ----4
4 4) 41~ - 90t 4 4 t-t- lt 0 -

4 011 -)0" 4 4) s A
tr w 00 0 0..- 0 U 44NtW .

4 4)-4 49 4)4)0 0N N N -sN0

41 0(4 E 6 0. 4 0041 3.14M
49 -A 04 0 41 4. 04 l '-4 041 4) 04 0-- IV- 4-)%''. 4 4.'xa'S.ON14

4 r 04 0r 4 . 0V 0 0 A.go0Mto4 0 41-- -- 49 .14 p)4j08 4 00A 4 110,001 00 a4)t .f
4 E .N4.I 4 to441 411U1.14.44

4414w.414c c4W..4 W414 W W W

41 C. &I4- a 00 to04 Et4)vA 4141 4 W %A 4
go 4110 to ~ 4j44a C 4-I- 4)M Aw4o1l - -414

4 '4a4104 0 .a 0 W ~ 41
4 4)a'V000.1 1 044 4114 _.44
4 0.0 0 ~ ~.4 u 4 000 1444~0-

ON 0%

r-4 41 o

+ 1 +

14 0 A..

+ -+ -4
+ ~+ .4 $

41 - - -0 -- a

$4 M ro 4 $4A

a '-4 +. 046 p1o
V-. 41VMV C V1 ~4.0

0 X 04
0 W4- 11 0 c-

m- -4 44P x I

)4 44 - i

0,e-4 -4 4 -4 Q.-4 -
0- to-C. 0- 00

'0 1414 I0 41

0~~~r 0'0 0 01

'4~~ 0 to'4 -

'-41~~4 >1 >)1 N- '

I~ w is. 1.1

00

0% 0 0
Z -44) 4 tot

.4 to

~0 -0T
N, 4 a v

> >. to'44(a.

N 0 0 ' 0
C Geese

C 14 -4

-. 4'0 1"0- 41
= 0006 B-00 a 0

4) -- I.-~ V V V to totVo Am t
se 111-4 0 0 cA 0 0

ON 41 0 0 .oc' ('4 4

41 * c m. 17 ON 1:7 m 0

a- .-4-' 4 XC -0N'.44 6 asa qN W4. 1V W -1.-I *

00 m m 00 c N41'49 9U 4065 XC 0) 41 >1>4>1>4 r- 10O a00 XO ON D

0 .00 00 $4tC0 4O 1V 044 .- N1140 .40"00%4 0'f40' ' t

-4 to V41 0 41V0 0 004 00' C~ 4)0 t o .

H 141 0 a. .toCC 01.4 . -4-4 4

B- 2

No~

wo *0

U% C640 1
N 6r UM 01

L. cc I

46 1
en.me

N~ ;' c' -301 110 AI
lp- C440 Ar 0 A o I Z

.4LI 10 1 0g z- ,

NW toac 41 6 L. 0

o% A~ -A c Lt--0 C
V. 0 , .cci

0., .4 - nL c 2 -
J44bC c c c .4 '-

I-4 04 0 ob to t

,0 0 v 41ycuc ve V0 1.6Y- 46.-.24 4- 4- 1' C)00 otot v

0)~. 40 a0. 0) 10 O- in 0 0 44

a Qw t -" 0416 l6 q4 'a 1 0 444O4Z I- 1 Oft4
fn .4, 01 "O- 1 0 A.0 A AOj Jv.I

@44ffV%&~ ~ .2 22P42
LI.5 SDsj45BI3

00

a, 00

0 0

0 0 -
be I . b

C6 - C6 01z

Z.4 -0 1 .. 06
to1 .1 '.1

&8C SB1.Ob 4-b

1..4

'* %.A~4Q it L. . g

I-- c 0 L I .- L. 0 . 0 L-3 1 ~ 0,. 1 U A a IL .%0 0 3* 00
.1~~.0 3 210 2Cd0* m I* f CX to~0-00

o 10 0. O6- 0 .L P d0W4 -I
s~ ~ c 0 I,1 04 ,10 6 . ,CC0 1Nma "

o6 - 0 0 @0 a 00 6 CL C.-% a m 0s4) L c
0 I0 m~ 0 I48 ad) I do.. a0 c. 0 .4 0 j * I IIUUL

0 *4 o 4w 0 06 0 0 0
* S ~ 0-lI~a~~~3z 0"4 1 0 0 o eo a ~ .

in 6 z441 1 1 1 446 l i 4 3 1 1 ,-

* 6. 6 8 L~.4 ~1-I1-1 L~.4 3-1-11- U I)~2'2IB-4

06 06 0,

1.3 LI .61.

4A3 4.3 di. 4

C- 0 r101 m 3 Sa W P- I Arl P4

02 Is -1z 0 l 1

W4A A la) .4A

i en6 4 64 . = kn

I~g I. or-166 .

-0 -0c 0 -04
4-4 to

-. % Z - . Z'. Z'.N~ ~~~ N4 1 60o N i * N N 1 I' t

.4 ~ ~ 19 t- v6- -. I f6-' .4 4 01364

2 ~~ ~ c o.2 ' 2 I .
*1 1J0 3 Z J 0 4.1 ccJ a Z 0 . 0

C4 j 6.4

. I . Q@2v)@ 060 . L. 61030.2S

L. 0- C. q lC o i -0 1Ul
0 44b 6 43 61, t

.4.4,4,I .- 4 04 1 0 4 4 Im 1 -. 44 0 I.

10 A 'A"3 I 02C v I AC A. I AC '. v

-4 .6 .5 104 (5u. tv 3r 61. I I431
1. ~~~~~ ~ ~d B-5~*J 6 ~ .b6.1. ...

'0~~ A.1O

4A4~

4~ 2.4 3 1 (

I 1 11 too

I I4 0014-4
.00 to

-j go ooO. U0to

-. 04 4144.41.4

cr 00

6K 10 .4. 9444 4.4..4. 4.4 a

60L 400 66410,
4- 00 WW3W 416
40 40 4 0

@1 ~1 411 d204 4.4.44 @
0 U W 404 %f60 33

446 g 246'64

. . *. ib 8 -0. 4 - 21 0

fl 43 :0 0 0 8 0 0 *LI 4441a.W~b

41YO 1.4 1 L
1.' .4N 6 6 flOu"' 'M l la 0 6

1.4.44 4A 4a

0. :- 0 ::O
4 0 b0@16 Iqf~***a0. UO 6.0.0I0%0041

44 cc 44 1~ 0 6 0 0 1 00000 .01.
2 1 6 1 C6 I 0 0 00t o0b
- ... 6 - %. 6 1

C. 4 C &0 . W0 6 3- a -e6-4 -4- 43 31 n 03 91a0- - 4 6 - .

0..0 0 1 96 6I . x 1 6 V0 0 00 0 0 . 460 -4.WW0 Wa0. i a 0
.4-61 %. 04~i 11~ 161 4466116

1021 U 14 C N. f"44 .4444 eR 61%00 C yma l, -c

0 ~ A AC AC C A- 4 I %
.1.43 S4 mo I a1 0,0,0,444404 a413431 4 ca a a Na.0 1 I cC
do 4 NM I M 644C6C44444 .

-T W 0N -7 0 -

'0 '0 '0 ~ ~' 0 '0 1I N N N N N N N N

00: 0

I" rn t-Ca cc 0 9 03.W WI d WW 1WW 031
CU cm m It- I.. I. P 1 . . 1..0. fo"1 0 . .

40 a 1 11 -. 51 0 1 % S-1. 5 0 0 0 0 0 0 0 0

10 A f5- %0 '0 .0 '0 '0 %0 '0 V0 .0'

J 3jP9!9? 1 00 000 00 0 0 000 00
N Y %a 4 4r cc M cc 4O N 4

r40 m 1.6v *0vv N % . vv v%
b%44 a a 1 a %a % %a a0 - a 0 @ .4A A' A % jIA

-a -a1 Q .to o a aj aj ina 4 a 0 ~ e s e ~ . e g e

fl1 4 N '0 0 4 14 14 N 4 14 '0 a 0O-0;- Q1;1 0

C.C.4' a '07 ' ' ' 9, '0 0 '0 ' o

Cd ~~~ ~y 00.. s 0=0 0 0 0 0 N N N N N N

a~q a, a04j aa aa
W% at f" I.. 1 2 IC I I ,.I4I .I-I 2.- I d-I-U

I-..J. I- I-I~ I F .. ~ I g- 90 so40 041 C IC-041o

-A 71 (1 -4 * 0 i.JJ- ... J .aJ.a .iJ-
'0SI 'a Na Nt N! NC N Nr gr N! NAlaO~ v ~ o O CO O e

w in a'0 09"0 aW .a i a Q

coi 4 - - - -4A - - -i S N N N N N N N N

Ua4. a @00 a a a a -
I = = 1 C1 1 1 1 '1 1 1 I L41I 0

-aoaa30 .4.a 3'. Ca 3.i .J c. c. .j .a .j9 ~ a
1 10 0 0 0 0000 10 1d a Id1

1S 00A n0 0 0 0 0 0 a I 4 I-1 - o14
4

mm mom
C III-- 0" Z "" 0' 0 0i '0 0.0 0 I 1-

1 0%0101,0 0 0 0 0 0 0 0 0 0 N IJ0
@1 E' 0 0 0 0 0 0 0 0 0 0 x% a m -4 C AD

e IO N N N 0 0 0 0, 0 0 0 06 " 0w m 0" or a-w au)-I I I 4 I I- - -) - -I I 4 S
(OO000 0 00 0 0 0 0 0a 0 aI C C

10 0 0 0 00 0 0 0 0 0 ~
Q,0.30 0F 0 0 0 I00D 1.1 .

US 1C C C C CCf .J..J.J 06 1 .5 .5

000 IO Ce "IU

VS I-I-.v I 2 22

190 '0 0 0 0 '0 0 '0 d) '0 '0 '0aa i4I0' '0 0'0' 10 0'' '0.0..a '0,010

B- 7

-. 00- 000 0. 000 000. 000 0. c00 0. 000 0 000 000,0

A AAA A
Id WWWW WWW WIW tWWW WWWW WWWa Whi WWW W.W WW1.W W. WWC. 1..WWW

%0.0.0.I. so-0000 .I,. .- .- .. 30.. . 00.. 0. a 3.0. 00.0 . .0.0b.. I.l.. .. c ...

*momo 99AV9009 090%oo09 moooovow vmmvm' mmovimmmV

^ A^^ ^AAAAA AAAAAAAAAA AAAAA A^AA ^AAAAAA

0 0 000 000000 00000000 000000 000000 00000 00000000

f" a "~'0 a Im m NO g-.-Cmm ec do rol r 0 0% 1" 1111 a nO ON t" O a1- 0
f" 1VN No 11% NoU

,10 10 1%0s %%%0 tc% ss10 ,% - % -01 %a %,0 o-o -. % 0 %% -4,0,0 ss %00 -a t
0 0 0 0 0 0 0
m. Q. m. 936 06 a.~s- A P.6- A 1- X..- Api ~ -. A)..I- A A x0.- A t-- - A..

40r 11).1U) w 3 &D0 4f WV0 0 a &A InU w &a0 v)02 i0 01a o Ac)aV n t

4 a. 0:0 *4 Do D~04o o-4 W~ L) Q~ z0 Paz Q~4~ P. 0 ,Ow1 P "

.jJ -3 - u.sJa .ajj..J~j 0aa.~... .4 2.j r.a.cc.J 1 a - .. J .J.6JJ.... a C

48~ a-- N 4 f 8- 4~ h- a 4- a a A '

w w 6 W 0 6 W d'o a9 oc d oa.. 0 , 2 0 0

"W- l 48-1o 111 1 2~O1-.1 1- 1

101-- .1 1 10- to to--111--.j1 - - 1--."0-- 1-. t------i-- - -I...I..

El 64 44"Op"644 .. '... 0 f.l 0) 60-4-4 0 +

M~OM: M. 00 0 W QM 6 M 0, t- 04 0. 00 60 1. 026 026 00

.4 -0 .4 .4 4 4.

C C C C c

...- Ny NIIffIN N N m mm mm mlfv0 awaaaa z , v a 0 U 0 AA IAUIAuAO0

vC '00141 0'@'@'C'@ A0to n I 10 -0 to 0'.0 .O@01@06 oa 0t .0 O@ c a c o a 0,C' 0,0,0,00 .CO'C

0.0 .o 0 0 0.00 00 10 C
It - I

0 0 011 01 000Q.&L0 0

V I

Laha 0i a 0WW a ~ 0 a

ccl II ccclacccI

ND% cc 0 Q 0 00 fn ar 0 0 0' 1 30

(%at IA S-w

'0 0 41
:^ 2%, D3-^A0 , t

'0 00 I) V) 00a aLC-

$. AA d A 41 al a -9 w A AA 0 0 a .4 IA4w
= A 01 3 I I .c

0000 0 0 0000 000 00 4dbt- Iv3
-3 '.j .. 1SJ Cj

0V V V ~ V 0IND N% Nr a NI0cccCC4C . ,
'a " to1.. -

toa1 040 .A O%0 '0 0 0 D 0 aI 0 10

Id 0 0 0 0 0 00 a0 b 0 '0 3.. a I I31.0
S O 19 4 1 1 1 " 1 0 1 Or- 433r. ad 0. wOa a0 a. .9c

414 -3 j J3J3..---- 4Y 144 4 1 4) -0 C. so1 a
i a c 0. v 0. I V a 5

10- ,0-4IM4U 6000to o- l.J -a'Si 3* = I PN. I I.-
cI I II I I cc c c V)-mOwl In to 0C - m

-4J.a.i.... -1 1J .J cI a IL. I0 II
a 3 0 c

31.0O.4 a3. ft III I-. 010 S 0 0 - .

UNN N4 N CLN*ANN.NN.Nv) 0 10 44 4 = IIN
0 cc P. a 0 1 0 Cy I

a a 41 41 I40 L..03 06f 0 .
0u on Arut a 1 0 0% 3 m *4i4U I* -4 1- co goqbgo x1

" O 1 0 % 0 0 - I- C t0 t- I- 43 1.2. l P 1 .I'l cI
-% N. 0 4 0 4 N. 1 .1 N -3 . . I 1-4316 # j la 1.

O .0 .0 %01 'a8 10 -c 3c% ! 0 - AP - t- IA
IIIIIUIUIIIIIIII a 2.3--~aIn

.J...-3.Jg.g.J.J.J.J..J.I-...J..J. 0% 3 43 -. 43 %2 3 0B-I.

10 0 a
.4 3

U3 sal w twwwuWaca Iwd wWwbI w O *w w ww
96 6 460 1. &.0 10 000.. .. 0 di 1 mI6 46 106

p. p)*p~. 1).) p.C)...P..p. .C)- C 5* p.)_p

V~ AI

A A A A AA A A A A A Aa IA A A

o 0f0 0 00 0 0 00 0 0 0 a~ 1f 0- a-Q 00 m

- - - %D a

% 3h 5 30 3% . *%1% 1%S P%5 5-.. .

INC IC . A A .p.I I 0 dI p .
4A 40 904.06 at W00) 1 .34..1 1 1 6

004~~~- -ii@~~m4 =I 1n310 X. OF 0q I46146a14,3 OP3 200 . P

VJ iv ~ 5 -I. s. C l . o L i

61 1 '161 -- 1 00 0 0 - I 1 61 40
A Z. Z % * %616

0 0 0 0 A -00t %'t-tI~-Os-%a Op to A 1 1 ba &a 0 &0 : : I cy z" 16 I I L65 :
: a 0 0 p. .4 A1 .1 40%.. 0 0 0

ad we Ifi. gaIN *..J 6 @ .
us 0469 U0I4 m mIinI 61, 1610 2c 0.11es O 44

4. 4 ". am . C 614 1 IV
a aa . 0:1. a F M. 2110,201a V. 3. 0 * e M - 3- * 1 110 IA5~~ 1J.I. tJ 2jj J .) J03 0 a. IIi

A c a04 .-S ; ; 1 a,4 aIll .. lJ11 _j11- 113U .J IiS 0 - -II.~-A I-5.a
2 r 3a M *-A CC 1500 32 30. 3-. Ov06l1L.0 0 10 0 ~ i6.S~

55 2 .41 ' -. .' - C O l 0 al5
* .2. .iS SI. a S41 *- 0ad4 64- -41 0 "-cIw , O3.C.

an C C.. C Cl c 0........ 10 0 0S 0 1 no

a .4 c C.. cI 0 LI -
a C IC C6 1 L.C USWI C

16 5. L. L. WI. on20 aI ~ . .

2 2 x 12 P,.0S ear 0 c 1 4 OX ex 0

WNO .I..4 ICI

a- _ Ir.. V.a .0- WIa - -a-ara-I-at- V_ t-a1 as- VDO p1W 1". 5- do ~ 5- S

5-10

30-3 P1% . O - 30- C

.A

IWOjj~~~
4,42 ~ararad Ol

IV 0 aVV4 0VV04P.a 0too i

- 0 -0 104 004 40,010 l0

:1. A A A

to

em 6e

jw OV dDAONvlVkV101

* ONOC~eqoB-11,

6-a i
aa

0- a

04 M-

*x

0 4 A4 to% 4

k4 0-4 0.0z.

.4 +'1 44

.4 13 0 -4.A M @ -- -
'-'1 01%.4A S

of '4- 0 11 1 ;. M -%00 . M +
M A M4 .'4 OA .4 am r4 c.

*b 1S - -4 - 4 6 I- 14 %4 a -4 6 .4

P 4 4 M kNOW 14 Oh . +4 *U-a
W' Kh 44' 4 3 0.. +4* 4' 4 4

-go. fr4 9. I ti00 Argo6o

.4 '4 4~ 46 6 '4 4 444 6£

3-40. Oh-4 6 -4 6 + W')

a U 4

-0.- 0 w -

-NOU

. ;

"414~.q

I 61140

lp -xXCL-.

U,4 0 4 4 4 4 004 0.%4 %2323V. 1174 013 1 -4 $4 v w
V A Cc III44*4- c - 1400 s

54 .' '4 ' - '

B-i12

I4A
B1

i
,~ S

A

- I

*1jI-

.1 ~ ~ I
~ -

V

I 1~

I _____________________________

B- 14

APPENDEX C

MAIN EXAMPLE

ua

0

00

m 4

It '-4.4-

0 49 Z: * 0
Ai C 44 3 0.-M
A0 0. 41 00

k 0 ~ M -4

0 14 4 43-
0 4- 0 - i'

*C 0- v +1 0 0
O 1X 0 0

4 A 0 N 0j to M. O.A t .4 rC
c C 1 3 4). N *-0 99 2 V 1
U 0 op. 0 m 9) la .w *-
In a k U 41)-4 4.4 41C3

-4j -MM 9-404 -4 k
0xx x 0 xJ 4 C4+ 90 w0

U~ ~~ ~~ 41 A*- 4 -A~ 4 I i - t

z~ ~~~~ r c + 05*

-. ~~ f 0-4 0 0
O -'4 4.f4J~ OM 0.~0. 4 '-.4 X MO+

tO OO MU ZUIO *w~ '4'C6

TIT.. O4 -I0
XX XX0. 0 4~ .0 41400~~ 14 a03. CV- 0~'

0 0 00a &

4 1 4 -4 +4 C
1M ~.4 - l.-4 X

.0 14 '-4 ' -4
o~t 0- we- '-

WN0 +1 -- 44j 44 4
-. , 94 .-- t'4 V-4 0 C 4 k$ c>Xxxx1

0- -V1 i -4A 4 + 0"'0 x x x
r, 4 C CI W1 , 1 0 Z U'+ .4 *'440

A A 01 41 4 o 0. A.- 43' AJ 0 9644

4t 0 0 W*$. 0 UV, A 0.4 :3 0.

c-1

4

-4

00

41i

3 03 (A3

M~v OOOm. VV

m -'-en-0 r. -94

$4 .4-4- .4 W4 41

o .-40. U 0 0

.. 000sC-2

0

0+

a 0

4) la 0d Z

to 0) 4.4 0% + .

.4 0 W 4 0. 4 -4

% * 0 V V Ad 0A MC

*~~ 4) 14 +. 4
O 1 4) 419 4 4 1 x I'm %. 4 ..

r 04) 0 4) 0 c~ N ..

0'4 C 4 0 W 0 c 4 -4 0 N .4 *.

>4 >q> v a> 0 tXVw 4 4 , 14 On' 00 1
I o 01. . to t -o 0 4) to4 C. c cI 4f 01

u 14 0. k .

- ~ ~ ~ 4 41 4)N4) c). M..-0 4) $.- 4 Ma) 4

MMIII~~ ~ ~ 0 0 . 1.1 04

to4o) 4)z0 C4 64 .4 4
$4XX1X + - 0A 14

*14 F44 M -4+ -4 0.4

C -4 v V 4 0

0 4) OC.
4 -- A) A .

- 4 40. 4)0 - + 4 V
4) 0 C C .a c _,- F
.24m14 14 -4 4) $4 -4C >1

VO 44 0. ztA qz cF -4 -A 0 - k11"N IF

00 C 4) *-0 0- %4 V CL

-14 c. r. 14 w c +I .- -'0+-44 -6 ;A V4 0- V 0+1- 40M. 0 -$
4). r14 4 0 A 4 0 r MC: 0xx

0. Is' 0.- 0-44 'A V-a. V0 t
A4 A4*~ _0 A AV 0 .

4) IA 4 00 CA -z U Ul).........

- -A AC 114 -*0- ~ 44 -I 4 -C-3 4

0.

00

4 0 .14

0-- 4 44 4.

.4.4r4 0 4

~$ 0004 W~ W C

u 'a41. 141 V 14j

+ c 0 --) % 4 A%
-4 -4. ,N J > 4 No-4 04.4.4 v

.. 000 4 0: - 1 41
)1 $4 W W 4 W- 41

- V 1 A 4 A0rW 44 W 14 W 144

%4 000-4- -

~~C 4- 10~0

- n C M~. -O.. NAL

CU L. tj- - C'1 0U

-3 v

0 4 C

--
045 U2LL

r'N e(U 9- q0% ONc Ul

- N 0 11 ;11 IsONl

o a
e

1- 0
0n L .

cc
0~ 0 5 3

-0 0

c. L.4
4

5Ua . 0 to CL

CO(1 I o5 C .-
3. L. C6 4-

c. j : a en
Lt(F-o t5

Mk I.C4
5

5L %

acIA O ~ *I Io . 01 : ' oc. 0 0 0

14 CO0C. 5540 4

C6 - C.4J .. 5 F 4

La.I t(0.N~*.0 (* ~ .~,.LL .~45U'. 14 L.J4 5

Ir

* 4u
41-

0

LOi

46 2 0

N - - N 0N N j t. r w C~.-T _
-- 4 Z444

V)~0- 0444 1

.4 2 4 a I I I 1 .% I
41 L 4 1 %.34 . 4.44

L11 1 4 4

I.4 IM cJ2. 0 I 0
C L.to L.c C 0. CL. c j L 0 I 1 1 0 ~

it. '0 I..4 W

41 C. C - . 0.)0L. 10))I
o, - -. .. 0

06V) F 2 Ia 1- -L .5 1. cc I, M £0 00 j- 0

3 0caI e m0 L. a1 9)0 0c I

co 4h ~ 01 04 0 - 10 N0U% - C b10-Nf

~4 I I.. I I
I'D , 0 Aa D -3 iv Iu m

1111 1in -4 0 - -' -I -4g -11-1- -

.. ~* 1. 444 2.4 LU 4&'2422VVaU~rC-L6

.4 ve j 1 .b .343- .3. P 0

06 -A --.

2r2

to, 0. 00s
411

41 M a UNS xI
.1c cc ccccc

.4 U - f - %. -o M

LU~N NMNN

AE I-(

w LW J. -3 - C V2V IV)0(

R CC U 0 0 .- IP.A AAAAAA
Iye . - I I Ic I 'l

.08~ ~~ ~~ 1-2 .J -3.1 -m3i44411

LbS. "0 PV F CCC CC C

hiCC' 0~ I 0 C $CCCg
41 00 1 N. s- I-~ F4 t- 1- 0 c n

. l azzag 0 :) .
040,22000 0 1 %. I.

41 to 0 a 0 0 I&% II

a .C C Cc 02 C 0 ~ -3. .s -

0 3N 100am .
0 Uv C0 0 0

a , " 0 I v OwI 1 -.008A1toA

8.1. .21 g 0 a0 0 -Kbz @Z @Z

-- N NN I 1 - 0 N oA 0 1. 1 I I S C I

V0 00 NN N. N N I b. cI c cL...-1.

06 IUZ ZZ :000000 S210a.:
4b ;%00 0 0 a 0 0 .y

1.0IU U U t- *I ftI I LASS-c 0a 14 -4
A A jav

a"I 4. tC* 0 - *

a CC 3000 0 - IIl~lC-7l

I C
W%~5-

4, a

oc ,-

ce

in01.
-1 mi-

I Q3 I

1% W i5 0 % LtI I-J
Z o 1 0 Z.aa

01 . .3 -4

o01 00 O a% ca
.SaO l==== II avi.-. -

0ea CDI..............c
1e a 04106 1 =I

V. NC O a4" ~ aYc

00 0 a
q- 43 -1 . Co oa 0 -~

-0~-.a- a- 10 00 laWw10w o

0, am~ W, a-a41 _000 a- a,-C 0 a- 0000' I la5.

a.V 4 a. -

0 r0 I 0
I r6 a 0. 'a A "een
1 .0. os, a @0 aIIaI o 4ZI~~V) 0 0 4L*Y O om .a.1 .1 0 6

co 4 C4 =.4 mUUU =MI CCa.a..C :ze.* a Clio4 o 11 1 am It II II 1JOO .J .

C go c Ca c--

0 J. . a a s. O S . 'm 0 , .6 0 3 I im
5.1.0 . I9 =% I333 - ,, 0.4 0% Of 0O ~ '

0 I 0 06 a 0 C
L .m 064 . 3 1 0 0 0 C4 en * 0 5 M 0 In o - ' .

O U~N Il j. go "jL ; "C O " a:h . -- -J

A a- A, * j'. I aL v r~ ena a 0n onA
C340I*0 04Om

i 3

*LCO m 4lCCC1~CG8

A A A A A
WW WW WtWWWWWWWgW IaWWWWWW bWWW

*@.~bO..O. ~b~~mO~~a SO&&&a
b.. I-6 6.6 Il 3.n----- o-er-

'00

A AA AAAA AA ^^ A A^AA AA A A
ev Q 0a

oo00000,0000000O0O0 000000 Q COOC
cccccc icccccccc ccc ccccccc Icccc " C I

6- 0 62

CL.. 1 ",
e 1.- 0 Urr- -f- en Ln - P... - t- - I- a 0 % * a as

m -m f"3 flJN m Onf f " MM ww)fm e

0..06
^I- J-AA I-. ^ I- A

C 0c = 0 cc003043. - . 1143 00= - 0 6 Z

c 0c 1 02

c11 111cc 9 f 1611 Ic 9! V1"n 12. laIdii 11 12f I. I... A 6-$2 0
I- 04

- 0 9)

43~ 43 0 200rI-a

-OW 0 acccwm m0 wmf4 09a.96. 64#a4.f-..umI -1- 6 SE

C i . . C- C- C. 4- 1- C- 1. 4A - .4 1 4 .C4.4661

$2 'I 6- - 1> c 1 0
I I'll-IZP1 :g111 1 111 . I I 6 0 2p 2)"il6'll)1

F. 6- 1- P4 1.. 1-. 6cc . -V.I- a
a-aaII WJ I j6 41~ 6

.. i L.'v .2+ 11 i f11 11 1Il ,.-,IIImI1lislIH1g11 if vm4+0 c V 2 1000 0 160)6
- 0 4 -q.I4 + 6 I . + 1 .3 U .- s ai. v t ,.- c 2 c $2 a. C £c

IS l .- -3. 3 n3 I U,5 4,6 4$2 600
2, C CA- a2 Z'. I6-L-

C c I*-C N . 0 'cC2
1. L he 19 ~ '42 0E - 1 60 0
10 '1. CL46L 0.4 v3 1I

N M oja %f%26 azr-CzC
.m ~ ~ ~ ~ .3-. 0 m6%% - oC,0wf.N ~ ~ 0j~ O -~ ~0~4I#(~ ~ 3~ 0 ~ I I U. 0

Cu N(3 (3N1CJ' N N N m4,44 6 6

mmmm ene mmentEm WE f~ mm. 4 .4 m 0"- CNJN

C-9

00

CV I-

0 0W

go IU WW cW WW WW c c

- I

4C >

LIL

0. 0 .. I AA , OAA AA= AA A:
o I C I I 0 c j j jlz c c 1 24o ~~ -j-j j.I CI y C 4 *4*4 4 MC 1

02~ P- P. 9!oo~o 00 0 0 0Nc

a C-0 1- An CoOI..4.

01 4. 1NN Ulu-N NN -

In C 1I 9. .1.3

~~0- I-. I- 14 W*O C 0 O. C C 1 0 16
go 1U U 0 o u .4 0 0 0 .~ -.2 -a . a

I-. -.1 -31 a o v o % J v o -1 --. -3 -3 E -

m 0- c

I.Q 0 N I000N 4 v C- c00. wL. CO. I C
I-- 0) 0- 0 0 030S00 I

00 to 0 -C -- a * * N
ut. C I3 I L.3 u 0 . o-s

to 0 .ao c. h.,ou - . .- 6 1
W -. f~ M UC -I I0 V) to II-I- or b. 1 3. 1 1 3 I4~L I.-

C~~~ i 0I 44 ~ 4 . 4 4 4 . cog
.3~~~- LC M~- ' t 3 II . 41I

C~~~~r -1I -1 -1 -4II I I UI I I U
a

9 2
V 10' -31 I 4 -3 v 1L 0 Di AD US

.3C a 0 1- r" C cI
9~0 0 0- 0 O I I~ 4.IC~.-~au-u I~Ia~ VS I 0.02 I 92

CU 4211 0 ~ b +.~.-42.- 443* -CC CL C C

1- 0 - -Nl- 0 1.1-4

c c

a 1W apW aW a 0

00 a " a~ L.4 -aD=

CC I c . . -) CI-

0 c c c c .3 c I an1-4
Lf) I j CC4 000-

0 14 10 00 00 SoN 0 m -s m:::0

w C3 C I -C=0 -) CS

CL -4 0 1 0) a C6NS 4) 46 6

C I r- c I

1.3~~~ so 0 0S. - .

06 44 14Aac m 114 N nIt

Ul ca 0) CS El V
I I 0 II I-.AI-.A en- A S4 t m= = =

0 -3 a. 1 0 0 0 -400 a202 .
013 0 0 of 06~'Z ' Z 0W4 0= 0

. I- 3 I- 1 S 4 j0C C 0 -y L) . I-..

3-- V-- t I w a wS ICSI 2-0M 0~

0 CC~ 411) 0 05 1 a. S . - I . 04' 0 4
- -.0 El I , - J- 3- J- Ja 7

01- I -) 0 0 0 (1ML 4p d 110 0 a *1 001 50 10 4110
0 0 a to -0 0 c~2 ~ o 1 1L 44 O0 1 1 0 00

0 El I 0 V) - CI - 3 mm O OO O Elcn 04v100 9 t
40 SO 06 S j 06) 0 C.E I U6UU S 1 0towt t0 0 NQ

55. cJ Z41.. , 00 !r c St l S :. .oo

L. S. mm c . I. I 0 W W4L.. . V~
i-.I-. 4)556-.~~I I-. 5- 0). 0 ,40~4 . L, -. 55 ' -J

C) II I 4L.~. . Ci Cs C 21 In m
IQ4 SC 1 2.4 to 40*0.S~ S- ~ I))1)) S ~5

mC C IC 00 0 r 1 0 (m w 5IO1-0 x 2 I C C Ii
4))~ I 0 o Q' ms 14- 1 ICC))144 .

-j 201' -. V 2 1 0.C3 A.CJ A 2.) I UUjW z) 20IN
CC -2 0to0--'II 4- C C - I

-- 150 0 0 L C4).4) I I.D)~).) 1.I 11

Ir 0 N N N NN
4

rJ 0N

A A AA
411~~ ~m sa~ ww waa Edh aW h ala l

96 4L. 4000 11. 0. 9L.0.414V096 0..6 AL. C6 IL
I)... C.I). C I - p.~ I . - I

ac ~I c c I I lc I I I I a - -.. 1J.3 -3 j J.j .J .J~Jj I1 .J.

to lo lo V- II-2 I--- lo-- I-0- I-14, 1 II-I-- 1. 1. -
5- 5

a a

o a .IAA ^AAA A^ A^AA AA A A

.j -3 11 1 61~1 11 41 414141041 0414 1 41 4141,00 0 41 10 00IC CC CC cC C CC C CC C c
1-1 00 000000 000 0 00000 000 0 00

Ic cCCC CCCa c c CC cc c C c c C C C

-- N uv v'~~ v~ %0 v 'v'v'v 'v'.v v~

N- t. I A - -o 0 U. Ar a% C-4Is 0% m

I C' CI 91 . l'- ^1 1.4 - 1. 1-

0 00 00 of; I 0 Q Q 0. 0. 0.V0 r, 0.
o V t I c I a Ic 10 3 Ic cA--~ IA--51) 12AA 1 . j

0 '. -, -o - 0-I 2C IC C III C i2 II ~ I
-v -r Nr 0r .Ja. .J f..J.J.J .a.j .j~

; - ; - - 0 lIar I1- 0 t o0~ nr_ 0 .o,.-a0 N 0 IA5.o N0 eflo 0 t-N~ m I
- C C 0 0 04a 41N A1 *A N 41 4 6 4v

q 0 aa I- a a a a

J J 19- 30 1J 4J'.I I I- L W = a I-O Us a. A- 6 0 IL mm00 U.c

: s " '. : ;...4 C . =)0 .4)-. .4 I- Dc).4)P-CC C")-C
N N 1 (3 1 a I Iss I s I a * 1

a 0 0 0 a 0 *. M.."
a o 0 a 0 0 w 6. v.L

40 1 a l.iI25. 111 IS .14 f24
2 1- -- .- . 2-~ .411. - Z". 4 :. ,1 , .U n

aO n f" f ON' C'. 1s' C' Q0. U 06 .1 ha0W 06 VM IU 00 M UO W a0.C
o 0 a c o C c 2 L:Q

06 CC C L L. L .

U * a a 0
I-~r Cy Q

0. 1 .0.

C-12

0%0

C6 w

0

-K -K

10~ -41 -1 -3 11 -J 1 .1

IC Il

'1 - . C

ILIL mi

06(- 4l 34 2 4- 24 4 .42 3 I N r - a -S -

L.0 11 Or -3 -

111- 0 0 0 0 0 00

0 1 g in0 0 0 00Q

0 J4 1= UUQ. I I I Io

*. : 00 0 00 0 0 0. 1J .W2 1.J J .JWW .
L.4 VU U UU U 0 1 0 010 W 116 011 '1 0' "Io

loo e-aaa0%s ,.. g00 n .0iJn . I"

0 0N -- IlI - - - -I- 0o 0T UN 0o C 0 01 0D
-j OI. I 0. c 0, t : M-I; -N N N M N eN

cr 1- 0 0 a a a a z a a o
031 v 1 ,) 0

&n 100 a1III-I 0 0 0 0 0 0 0 0
310 'aVVIll~V 00%..J.. 00 v .0 to 0
413 0~~Z Z -. ILU'1L)O 0 0 0 0 0 0
0 .2oooooo 1SW W.1WJ l u 0 0 0 0 0 0
D.I3 I u .u 1.) t-)-) Sb00 , Q wb 10 3 6 4c N I~ N 4~ N

-l 3~ =~~Ll I V ~ 0 a C) 0

C CU L LL

~~~ ON 0CCC~.l 0 0 L ~ 0 0- 0. 0 0. 0 I~~~C co m (5(o1333 0% I) &) 4 u 0. 0I 0

0 CLL IC CC6U Q 41 01 03 1 0 0y 0I-00-

31 100 00 , 11 El- - -- -- -, - -- - -
(n0 T4 Z 7- rX UU U I2 = -7 GOI N7 -7 NW Nr zT -V

... c. a C C I - - I 0

- El S I 12 L100 0 0 0 0 0 3



.4

488 1 JWW WW Wi W W W WWW W W WWW WW WW .WWWW WW W WW3WU
r A.9 C6 00 h. . 04v,6 480C. 06.6C.C LC L 6C LC La . . . . A. A. a. . 4 II0. C6.0.

r* 3-- .- .. .- cIP.008-. 1-.-I - - 3. - )-

0 r 0
I c J 1 -1 IJ .,*IJ

cc a

,c~~ 0400-0

1 0000 00 y0 0 Y00 0 0 0 00 0 00 0 00 0 00 00 0 000 0 00 0 00 0 0

v V W V V V a V V V V -7 V r V V f V r V w V a V W V a a i Vgai Vr~ V7 2 VV V V V V

AI I- A

-- = N C -O -O

48 8
0~~II.AI-~~' I-AA5 I-- -- -- A I.*I - IA

%., In4~~ cc48~Z m8~ 'a~~ v co 'a m m mI0 W8~ 48 m Lnpiv" ag
12 VIV 0R F 1000C06 0 1- 11C0 0C60.01.-C 00 0 -

cu m~ 0 N C 0. 0 0 0 NNo q 6% % O O m L)%0% 00 -(VNU 0 CY~ 0C U 0LL 0 C_-N mNC ..

00 40

- Op W- =- W = =48 W W =
-C c

OF cy m > a O1. w 0Tp* ----->-I-----.*1,----------------------

W4 I 3 W 00 CMW0 CMC 3 3M0 3C 0MC 0M1

+8.. -4 VI. 4: .

MC 0 C06C M 0 0 CL 0 M 0 a,0. 10.B06 0 C 06 06u

0 C3 Z0

M-7V 0t %C naU' 0t OC ; ~ 6m1 t.5~II~ - CO % C 4b I
.j I I, II II I -111111111111111 11 1 11 11 11 11 11 - I1 1

... ~C 14J~ -



1)0 0 -0

3 ~~- 31I- I-

0

11 00 I o lo 3cC l cvs
I eo .4 00. 0 &a1 -

4CI c C-2 cI c
ry 00 LI

£ ~ 0 v3A A A
a *U I Z3 04 306 --

.60 .J - 0 0))4444) w6 0 j

04)322 i.- -C 10 3- Ow 02202 9
cr Z0 f0 Q~ 0 0 04.-0-j .

4)366 - -1- 1. 0)61

* u 0 a 1 0

A == I zI1- AA-
co 0 -- IC)o0 fl I

C, Of 401 00 aZ4))4)Z4

IUU OOU .J 0

IL..43~w I IJ.JI..

00: : . 0 '00 0% 8-I-J ~ - I 0 4j 06 0
*1 3 c -7 0 0c o0wm0c 4 p N 3

1 4, I a .m.. N. 0 N 6. 00 0.4 3. t-
N 0 c3I3 0 0 0 0 I0400 133I-

L. v6 IZZ := : co A6 I
v) 1000 0 0 v) 1 0- 0 4)6 0 0 W)

4).* IU u * o I 44)1 )* 6 uu 4)Q

3. 6 vI .J 0 ~ 04.) c3 I t, I.-.41e
v) m24111 I 0 0 141 0U W 1 13 --- 1

.j.. 1.I-- 43. *3-- ). I 04 O. 4) I1 1)' 1 33. 4

1. 1 ) Q .. 1 CI u o N m a 200 l3- M ) 1 4)3 u
24. I 3 I I11 1I1 I I I
2) Aol -j. -AClo - 3 0 0 1. -1 -4) A I. 'aC 1 -o O 0 3 v I_

NC - C#o 34 043£ 11-0 0 - 1 £ I1)44

0.00 0 360 ~ 0 0 C3.314)I,.C 04)30030V C315



410 0 0 4500

as 09 C .IL 69
13- As AA N.* ,a

3 -3 -J, Ce-

I 0.
* 0

C, A

I-3 -c 42 SlO= 0I

c cc c I I. a cc
C I C U-

ICC C L 14 0 4 ccCCcc

04Woo a a ~ CI m NO

0 OFI2~ I

Ica I5- w I.. H I.-W

0j t5 Cn)! 0 0aIu )V
u .4I5 5-A5 co L Q bI z m5-

5- ~~ 30uC00 0 -j026 - - ~ 5 C 0

goC L I -JO V01. .. n1 I**5 v to0590 1
r- 0 1- 1..CC 0 0- N O- cc 0 3 1.- 1.-IIt

- 6. 5- I ymcVV t- 5- (Y - - -. - s M mm(

Q 0o 0 41 051 I5- 1- 0 ba 0m 0 3
A 0A VZa 0 

o - 6 vQ~ a 10000 a -

00 Oc. A1 SL 14 1110.36 Ali. .Jj IJ SL.3 W
em .1 0K -4 c . 3 4? L2 4I c. .m -C1

01 = _j C CC C0 ONC C >P : PC I 41 : 41 , . 'II " 45 41. 30 04 41 N I 1 1 2 a C 04 1 1
.5 a ,m- mm ..3 41 j- crN W C 4 j ),a a 0% z. Im~

5 0 10 Ci C 11 L.411 V/ 30 0 t 1 o
50 0CS3v-41 043 +om a 366t_6 c0 , 30 0 0£-S+

m3 -6 -. 5. 3 C -2 0 0 6
$-5 LI Mb £41. - . 1 3 0 0 L
553 1W ... C .1C 3 V 411
a, I. t. ou41 5 1 0 041 a0.

z050 CL 003 . 1. Z. IZ 30
CY 430. 0 - 0 a o -

~ 3
s ~50 3 '.~.%~%. .20 I 0 D.0 0 j I 'oJ ~~ J '..%

C-16



- 0 -w ww w

Cc I,

A A A' A A0-.- A

c- L- 0 11 41
I- I I c c c cc c

160 1. .J.. .
a

t4 I A A

Q cii I
I CL3 x L c- -0 c

of in 0l 3A 18 LA .4 PV"A I.

o 0 3 3 1000a0400g00
jw 41g- 03 - c _ 1...4= = - - -~ - -

S 03 1 3 a -S '. CL M*.c c y a
0. w..I WOW U 1 13 I 1 Ul

j -I 3 I w
-. ~ ~ 4 Z.a I w atia I--. . -.

43 10 0 3
0. 0 C II C

I3 c C I m m m I A A E.
1~ a (.. 0 01 .. 0J .. 1 3 j - j

10 0I z. 2 A. I. I- 8- 0 8- mmmmmmomc -

121i v I-:N (30 3 0 Na so 0 Go C Cc I

* V0 a og @I.A0 0 0 0 0
2m V..~ 1 ~ 3.3.a 0 I 1 0 0 a 0'v

-1 .1.43 410 14,3V . a .3W L .
+ so~. 03- 4'2 33 "1'@8I I I . I I. 4. .A A

C. C CL I Cy N 1 L0 L

10:; .. 3- 1 01 3 1 3 11111

s-a Z2Cp Mr, I--- -' Or *.WE. s(\0 0 0 6 10aa a
I-4'- 10 V, al If 3i m 30 0i 0 0 0 1~

2 C6L.. 6. a 3 -C V) " 0 0 01n10 lg I033 I I0 I I to 0 b 0 (14 ma %nE I~ - x3

0 0. *0. '-3 1 I1 -j -0 AID3 0 0-00 3.0 0
M 14- 83 34N 3 M w .3 0 0 0nLN L 0 0 1 nU' n.8Lr NtC *..C OIL @83-Nt,,"I (33o1

1. 88020 3--634 6811.1. 03 08to

0 0.4L1. 32-0 0 033434 3.C3 10



V)v

, 6 as1 Zas 0

41 U, U, U

C UI CI C 
. ,  

¢ UI €CS

0t' I x v j mx 3 0 . I z -3 0 . 1 x x
t1-I . a - I L I L. I

• -, I,,41 UU , s

•. .n W. L. a ,, v. L. In 1 .. V.)u.

4= - 4 G 411 4 .

05 21 0 .:, 1 25

.48 CL. , 6 .0 1 1 %,L -45-
L1 L 0 3a v I LI ILocc vL c

ccco5M 4.11 .4 14.1 b 1g

1 m2 1. &J A

o 0 -r 
.0 

0 
0 

L r 0

S- . m &4 . (aL & , '.~ M I

' IN C- b ~ 41 a.~ N 1 9 .aN 0' INN , d

0-5 -4 4-4 Rk- I 4 05-5 ft 1-
a A 00 0A 1 a A aD .0 j0 0j

I Coc _4 I CIO

14~~C isI~ - 4



14 14

00

00 1.4 en 00
k S-4k A

Iwo O -4 434.) w-4

-4. R. 49 4t4.C

0 41 V0 V 4~ 14

A XV00 r_ c fl 0 gotola0

CA60 4  F 4 u i 0 t S2-. 04 1-1~ -4 -#
V Iol V~ V V0 00 a0 o .x 00.W(AAto 0) 4) 4) 0) 0)0 )0 wI t*t' 0 0 0 02 V-.4W U a 4- ,JC4 9 cc c 0 __4) 0 V.
0 W c~ 1. 100' V 00 m2A to0.o om o dcC

l0 A0 . '0 C r - 0 O 4"0 0 00 I4 0. 4- 4-4U- .1
M-4- I'a 4J W 9) 4 - - 45 0''1 -- ) 0~ Z- W A> >- o oM- .o 04 4J4J$400 .0 4 :3 4 1 4 U W 0 4 . - 4 4 .a' 01 41. $4N~ 0

60% ~ - 04 545140 4 MU AWMWC -4 4 N 4) 0 --~ 0~-4.UW W .14-4V U --- 45 . -4.-- 0.I0 -~4 41-4s(9 x4 6 0 0A X 0 61 to' ,W $4.~ 14)
0. .014 u 0. 6n to~ 0a A.4 122. 0.140U

0 6

-4 4

0. 4.

1) w4N 4) 14$ 1 4 M
4.C *Q... 0 4 5 -4. .

1440 0 w4.

C4 04a. Ioa v 10 Vv -v 9



t o (a

0: 0

041 W . 0 41 0+.1 0 0 is-
O41 41

O 0 * 0 0. 0+

V . 0 '0 00
41 0 c 09 ' 0to 0 0. + 41 e v 61i

. 0 x Ito 1...
to . j V4 14. .q +

3 0 00 0. x v 1

X 0r- 0j 004Ad4 $ 0 x .0
4. **1 .d 3.4 to' 0 , $
0 X4 14 00 00 0 4104 4 ad

+- - 0 441 0'

00 0 0, 0XXXXX~X0 a '00 V

0.--

.4 N M-
W14414 0 0 r
4141 r. -' .1

04 --4.
to 00

N. M 0
411 0)4 4 4-

C..................... ................
4 0tP0 4 $ c -.-.. .4 + .-

go at o>.>- 1 41 41 41 0 .X 01 0 1 Ito(
P 004 0 4 crl 41 4 .- 4 -4 00 0

.0 W 14j 000 0. .4 .~ 0. . 0. .+
0 X 0 0) 1414141$4 0 .0 1+ 0 14 + 0
0 . 0 '-4 N 0..a.0. 131 31 Dern l >I X x x X-4 M' x x x x x x

to 0 0d

C- 20



0 $

0

0

0

>,

13 0 1

4 $ 4 J

41 0 

3C 2



0 V

00l 00 C 00
.0 w

C-2



1, !

C-2



I°  0

- - 4



0

A

I- .
.. ...,

oo~.9-*5



e

U

o u

I
U

U~u~ *1

'- ,- 4 '-~ ~ 2
I - 0.

a

0~ ___

o - -~ - - - - __________

5,

U~ ~*2 *~~

U

5,
50 *~ ~0

. * 4 -.

~UUCJ a

ft~fF
.~ .~ - ,-. ~-

I., ~ .50

-~

50"

C-26



APPENDIX D

RELATED READING



q

[ADA] Ada Joint Program Office, Reference Manual for the Ada
Programming Language, (United States Department of
Defense, Washington, DC, 1983).

[Aho75] A.V. Aho and M.J. Corasick, "Efficient String Matching: An
Aid to Bibliographic Search," Communications of the ACM,
Vol.18, 1975.

[Aho77] A.V. Aho and J.D. Ullman, Principles of Compiler Design,
(Addison-Wesley, Reading, MA, 1977).

[Aho83] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures
and Algorithms, (Addison- Wesley, Reading, MA, 1983).

[Aho86] A.V. Aho, R. Sethi and J.D. Ullman, Compilers, Principles,
Techniques, and Tools, (Addison-Wesley, Reading, MA,
1986).

[Arang] G. Arango, I. Baxter, P. Freeman and C. Pidgeon,
"Maintaining and Porting of Software by Design Recovery,"
Proceedings of the Conference on Software Maintenance
(CSM-85), (Washington, DC, November 1985).

[Barrel W.A. Barrett and J.D. Couch, Compiler Construction: Theory
and Practice, (Science Research Associates, Chicago, 1979).

[Berg] H.K. Berg, W.E. Boebert, W.R. Franta and T.G. Moher,
Formal Methods of Program Verification and Specification,
(Prentice-Hall, NJ, 1982).

[Biggs] C.L. Biggs, E.G. Birks and W. Atkins, Managing the Systems
Development Process, (Prentice-Hall, NJ, 1980).

[Birre] N.D. Birrell and M.A. Ould, A Practical Handbook for
Software Development, (Cambridge University Press, NY,
1985).

[Boar] B.H. Boar, Application Prototyping, (John Wiley & Sons,
NY, 1984).

[Brons] G.M. Bronstein and R.I. Okamoto, "I'm OK, You're OK,
Maintenance is OK," Tutorial on Software Maintenance, G.
Parikh and N. Zvegintzov, eds., (IEEE Computer Society
Press, Silver Spring, MD, 1983).

[Brown] P.J. Brown, "Why Does Software Die?," Tutorial on Software
Maintenance, G. Parikh and N. Zvegintzov, eds., (IEEE
Computer Society Press, Silver Spring, MD, 1983).

[Bushi E. Bush, "The Automatic Restructuring of COBOL,"
Proceedings of the Conference on Software Maintenance
(CSM-85), (Washington, DC, November 1985).

D-I



liCalinl P. Calingaert, Assemblers, Compilers, and Program
Translation, (Computer Science Press, MD, 1979).

[Calli] F.W. Calliss, M. Khalil, M. Munro and M. Ward, "A
Knowledge-Based System for Software Maintenance,"
Proceedings of the Conference on Software Maintenance
(CSM- 88), (Phoenix, AZ, October, 1988).

[DeMar] T. DeMarco, Controlling Software Projects, (Yourdon Press,
NY, 1982).

[Fay] S.D. Fay and D.G. Holmes, "Help! I Have to Update an
Undocumented Program," Proceedings of the Conference
on Software Maintenance (CSM-85), (Washington, DC,
November 1985).

[Feuer] A.R. Feuer, The C Puzzle Book, (Prentice-Hall, NJ, 1982).

[Fjeldst] R.K. Fjeldstad and W.T. Hamlin, "Application Program
Maintenance Study - Report to Our Respondents," Tutorial
on Software Maintenance, G. Parikh and N. Zvegintzov,
eds., (IEEE Computer Society Press, Silver Spring, MD,
1983).

[Flett] N.T. Fletton and M. Munro, "Redocumenting Software Systems
Using Hypertext Technology," Proceedings of the
Conference on Software Maintenance (CSM-88), (Phoenix,
AZ, October, 1988).

[Fostel J.R. Foster and M. Munro, "A Documentation Method Based
on Cross-Referencing," Proceedings of the Conference on
Software Maintenance (CSM-87), (Austin, TX, September
1987).

[Freed] D.P. Freedman and G.M. Weinberg, Handbook of
Walkthroughs, Inspections, and Technical Reviews, (Little,
Brown, and Company, Boston, 1982).

[Glagol T.G. Glagowski, "Using a Relational Query Language as a
Software Maintenance Tool," Proceedings of the
Conference on Software Maintenance (CSM-85),
(Washington, DC, November 1985).

[Grogol P. Grogono, Programming in Pascal, (Addison-Wesley,
Reading, MA, 1980).

[Hale] D.P. Hale and DA. Haworth, "Software Maintenance: A
Profile of Past Empirical Research," Proceedings of the
Conference on Software Maintenance (CSM-88), (Phoenix,
AZ, October, 1988).

D-2



[Hansel K. Hansen, Data Structured Program Design, (Ken Orr and
Associates, Topeka, KS, 1983).

[Haran] M.T. Harandi and J.Q. Ning, "PAT: A Knowledge-Based
Program Analysis Tool," Proceedings of the Conference on
Software Maintenance (CSM-88), (Phoenix, AZ, October,
1988).

[Horow] E. Horowitz, Fundamentals of Programming Languages,
(Computer Science Press, MD, 1984).

[Huffm] J.E. Huffman and C. Burgess, "Partially Automated In-Line
Documentation (PAID): Design and Implementation of a
Software Maintenance Tool," Proceedings of the
Conference on Software Maintenance (CSM-88), (Phoenix,
AZ, October, 1988).

[Hunte] R. Hunter, The Design and Construction of Compilers, (John
Wiley & Sons, NY, 1981).

[Jensel K. Jensen and N. Wirth, Pascal User Manual and Report,
(Springer-Verlag, NY, 1974).

[Johns] S.C. Johnson, "Yacc: Yet Another Compiler Compiler,"
Computing Science Technical Report No. 32, (Murray Hill,
NJ, 1975).

[Jones] C.B. Jones, Software Development, (Prentice-Hall
International, London, 1980).

[Ker75] B.W. Kernigan, "Ratfor: A Preprocessor for a Rational
FORTRAN," Software Practice and Experience, (1975).

[Ker78] B.W. Kernigan and D.M. Ritchie, The C Programming
Language, (Prentice-Hall, NJ, 1978).

[Kuh85] D.R. Kuhn and C.G. Holls, "Simple Tools to Automate
Documentation," Proceedings of the Conference on

Software Maintenance (CSM-85), (Washington, DC,
November 1985).

[Kuh87] D.R. Kuhn, "A Source Code Analyzer for Maintenance,"
Proceedings of the Conference on Software Maintenance
(CSM-87), (Austin, TX, September 1987).

[Landi] L.D. Landis, P.M. Hyland, A.L. Gilbert and A.J. Fine,
"Documentation in a Software Maintenance Environment,"
Proceedings of the Conference on Software Maintenance
(CSM-88), (Phoenix, AZ, October, 1988).

[Lesk] M.E. Lesk, "The Portable C Library", Computing Science
Technical Report, Report 31, (Murray Hill, NJ).

D-3



[Ma85a] J. Martin, Fourth-Generation Languages, Volumes 1-3,
(Prentice-Hall, NJ, 1985).

[Ma85b] J. Martin and C. McClure, Action Diagrams: Clearly
Structured Program Design, (Prentice-Hall, NJ, 1985).

[Ma85c] J. Martin ana C. McClure, Structured Techniques fur
Computing, (Prentice-Hall, NJ, 1985).

[Ma87al J. Martin, Application Development Without Programmers,
(Prentice-Hall, NJ, 1987).

[Ma87b] J. Martin, Recommended Diagramming Standards for
Analysts and Programmers, (Prentice-Hall, NJ, 1987).

[Meekel J. Meekel and M. Viala, "LOGISCOPE: A Tool for
Maintenance," Proceedings of the Conference on Software
Maintenance (CSM-88), (Phoenix, AZ, October, 1988).

[Minsk] N.H. Minsky, "Controlling the Evolution of Large Scale
Software Systems," Proceedings of the Conference on
Software Maintenance (CSM-85), (Washington, DC,
November 1985).

[Parik] G. Parikh and N. Zvegintzov, Tutorial on Software
Maintenance, (IEEE Computer Society Press, Silver
Springs, MD, 1983).

[Pau] L. Pau and J.M. Negret, "SOFTM: A Software Maintenance
Expert System in PROLOG," Proceedings of the
Conference on Software Maintenance (CSM-88), (Phoenix,
AZ, October, 1988).

[Purdu] J.J. Purdum, T.C. Leslie and A.L. Stegemoller, C
Programmer's Library, (Que Corporation, Carmel, IN,
1984).

[Rose] J.R. Rose, "Refined Types: Highly Differentiated Type
Systems and Their Use in the Design of Intermediate
Languages," Proceedings of the SIGPLAN '88 Conference
on Programming Language Design and Implementation,
(Association for Computing Machinery (ACM), NY, June
1988).

[Schrei] A.T. Schreiner and H.G. Friedman, Jr., Introduction to
Compiler Construction with UNIX, (Prentice-Hall, NJ,
1985).

[Swann] G.H. Swann, Top-Down Structured Design Techniques,
(Petrocelli Books, Princeton, NJ, 1978).

D-4



[Tauswl R.C. Tausworthe, Standardized Development of Computer
Science Software, Parts 1 and 2, (Prentice-Hall, NJ, 1977).

[Terry] P.D. Terry, FORTRAN From Pascal, (Addison-Wesley,
Reading, MA, 1987).

[Ullma] J.D. Ullman, Principles of Database Systems, (Computer
Science Press, MD, 1982).

[Vick] C.R. Vick and C.V. Ramamoorthy, Handbook of Software
Engineering, (Van Nostrand Reinhold Company, NY, 1984).

[Waite] W.M. Waite and G. Goos, Compiler Construction,
(Springer-Verlag, NY, 1984).

[Warni] J. Warnier, Logical Construction of Systems, (Van Nostrand
Reinhold Company, NY, 1981).

[Wedo] J.D. Wedo, "Structured Program Analysis Applied to Software
Maintenance," Proceedings of the Conference on Software
Maintenance (CSM-85), (Washington, DC, November
1985).

[Yourd] E. Yourdon and L.L. Constantine, Structured Design,
(Prentice-Hall, NJ, 1979).

[Zelko] M.V. Zelkowitz, A.C. Shaw and J.D. Gannon, Principles of
Software Engineering and Design, (Prentice-Hall, NJ, 1979).

[Zvega] N. Zvegintzov, ed., Software Maintenance News, (Staten
Island, NY).

[Zve83] N. Zvegintzov, "Four Common Complaints - Tips Boost
Maintenance Programmer Morale," Tutorial on Software
Maintenance, G. Parikh and N. Zvegintzov, eds., (IEEE
Computer Society Press, Silver Spring, MD, 1983).

[Zve88] N. Zvegintzov, "Attitude," Software Maintenance News,
Volume 6, Number 8, (August 1988).

D-5


